207 resultados para ST-SEGMENT ELEVATION MYOCARDIAL INFARCTION
Resumo:
Morbidity and mortality related to coronary artery disease (CAD) remain a great challenge in patients with diabetes mellitus. Revascularization of CAD is an important therapeutic intervention owing to its impact on both symptoms and prognosis. The optimal revascularization strategy continues to evolve due to the advent of new technologies and improved peri-procedural outcome with both percutaneous coronary interventions and coronary artery bypass grafting. Although clinical outcome following coronary artery bypass is worse in diabetic as opposed to non-diabetic patients, surgical revascularization tends to be associated with better outcome in stable patients with multivessel disease and reduced left ventricular function. The advent of drug-eluting stents has challenged the supremacy of coronary artery bypass grafting and has become a valuable alternative to surgery. The safety and efficacy of drug-eluting stents in the treatment of patients with diabetes and multivessel disease is currently under investigation in several ongoing randomized controlled trials. Percutaneous coronary intervention is the therapy of choice in patients with acute coronary syndromes, particularly ST-elevation myocardial infarction. The focus of this review is to present the current evidence, define the role of percutaneous and surgical revascularization in the treatment of diabetic patients with CAD, and propose a tailored approach for clinical decision-making.
Resumo:
Left ventricular assist devices were developed to support the function of a failing left ventricle. Owing to recent technological improvements, ventricular assist devices can be placed by percutaneous implantation techniques, which offer the advantage of fast implantation in the setting of acute left ventricular failure. This article reviews the growing evidence supporting the clinical use of left ventricular assist devices. Specifically, we discuss the use of left ventricular assist devices in patients with cardiogenic shock, in patients with acute ST-elevation myocardial infarction without shock, and during high-risk percutaneous coronary interventions.
Resumo:
BACKGROUND: Clinician-rated large-scale studies estimating the prevalence of posttraumatic stress disorder (PTSD) related to myocardial infarction (MI) and identifying predictors of clinical PTSD are currently lacking. HYPOTHESES: We hypothesized that PTSD is prevalent in post-MI patients and that the subjective experience of the MI determines PTSD status. METHODS: We approached 951 post-MI patients with a questionnaire screening for PTSD symptoms related to their MI. Those responding and meeting a cutoff of PTSD symptom levels were invited to participate in a structured clinical interview to diagnose PTSD following Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria. Fear of dying, feelings of helplessness, and severity of pain perceived during the MI were also assessed by visual analog scales. RESULTS: The screening questionnaire was completed by 394 patients, whereby 77 met the cutoff for the interview (8 patients declined the interview). Forty of 394 patients (10.2%) had clinical PTSD (subsyndromal and syndromal forms combined). Younger age (OR 0.95, 95% CI 0.91-0.99), greater fear of dying (OR 2.77, 95% CI 1.28-5.97), and more intense feelings of helplessness (OR 2.97, 95% CI 1.42-6.21) were independent predictors of PTSD status. Perceived pain intensity during MI, sex, type of index MI, left ventricular ejection fraction, number of coronary occlusions, and highest level of total creatinine kinase were not significant predictors. CONCLUSIONS: Clinical PTSD is prevalent in post-MI patients. Demographic and particularly psychological variables related to the subjective experience of the event were stronger predictors of PTSD status than were objective measures of MI severity.
Resumo:
The occurrence of sudden cardiac death (SCD) in patients with silent ischemia after myocardial infarction (MI) and the factors facilitating SCD are unknown. This study aimed to determine the factors facilitating SCD in patients with silent ischemia after MI. In the Swiss Interventional Study on Silent Ischemia Type II (SWISSI II), 201 patients with silent ischemia after MI were randomized to percutaneous coronary intervention (PCI) or medical management. The main end point of the present analysis was SCD. Multivariable regression models were used to detect potential associations between baseline or follow-up variables and SCD. During a mean follow-up of 10.3 +/- 2.6 years, 12 SCDs occurred, corresponding to an average annual event rate of 0.6%. On multivariate regression analysis, the decline in the left ventricular ejection fraction (LVEF) during follow-up was the only independent predictor of SCD (p = 0.011), other than age; however, the baseline LVEF was not. The decline in LVEF was greater in patients receiving medical management than in those who had received PCI (p <0.001), as well as in patients with residual myocardial ischemia or recurrent MI compared with patients without these findings (p = 0.038 and p <0.001, respectively). Compared with medical management, PCI reduced the rate of residual myocardial ischemia (p <0.001) and recurrent MI (p = 0.001) during follow-up. In conclusion, patients with silent ischemia after MI are at a substantial risk of SCD. The prevention of residual myocardial ischemia and recurrent MI using PCI resulted in better long-term LVEF and a reduced SCD incidence.
Resumo:
OBJECTIVE: A substantial proportion of patients develop posttraumatic stress disorder (PTSD) following myocardial infarction (MI). Previous research on the trajectory over time of PTSD in post-MI patients is scant and refers to self-rated posttraumatic symptoms. The aim of this study was to investigate the longitudinal course of an interviewer-rated diagnosis of PTSD and PTSD symptom severity following MI. METHODS: Study participants were 40 patients (78% men, mean age 54 +/- 8 years) who were diagnosed with PTSD using the Clinician-administered PTSD Scale (CAPS) after an average of 5 +/- 4 months (range 2-16 months) following an index MI. After a mean follow-up of 26 +/- 6 months (range 12-36 months), 24 patients underwent a second diagnostic interview. RESULTS: Two-thirds of patients (n = 16) still qualified for a diagnosis of PTSD at follow-up. In all 24 patients, total PTSD symptoms (p = 0.001), re-experiencing symptoms (p < 0.001), avoidance symptoms (p = 0.015), and, with borderline significance, hyperarousal symptoms (p < 0.06) had all decreased over time. However, in the subgroup of the 16 patients who had retained PTSD diagnostic status at follow-up, symptoms of avoidance (p = 0.23) and of hyperarousal (p = 0.48) showed no longitudinal decline. Longer duration of follow-up was associated with a greater decrease in avoidance symptoms (p = 0.029) and, with borderline significance, in re-experiencing symptoms (p < 0.07) across all patients. CONCLUSION: Although PTSD symptomatology waned over time and in relation to longer follow-up, two-thirds of patients still qualified for a diagnosis of PTSD 2 years after the initial diagnosis. In post-MI patients, clinical PTSD is a considerably persistent condition.
Resumo:
High sympathetic tone creates a significant risk for ventricular arrhythmias and sudden death, which can especially affect patients after a myocardial infarction (MI) when exercising in a hypoxic environment.
Resumo:
In a patient with staphylococcus lugdunensis prosthetic aortic valve endocarditis and coronary septic embolism accompanied by antero-lateral myocardial infarction, embolic material was successfully aspirated from the bifurcation of the left anterior descending coronary artery and the first diagonal branch. A good angiographic result was documented six months thereafter when the patient presented with a second complication, pulsatile compression of the left main coronary artery by an abscess cavity originating between the aortic and mitral annulus, leading to congestive heart failure. The patient underwent successful surgical replacement of the aortic valve prosthesis with concomitant patch reconstruction of the annulus as well as tricuspid annuloplasty.
Resumo:
The aim of this study was to investigate if acute myocardial infarction can be detected by post-mortem cardiac magnetic resonance (PMMR) at an earlier stage than by traditional autopsy, i.e., within less than 4 h after onset of ischemia; and if so, to determine the characteristics of PMMR findings in early acute infarcts. Twenty-one ex vivo porcine hearts with acute myocardial infarction underwent T2-weighted cardiac PMMR imaging within 3 h of onset of iatrogenic ischemia. PMMR imaging findings were compared to macroscopic findings. Myocardial edema induced by ischemia and reperfusion was visible on PMMR in all cases. Typical findings of early acute ischemic injury on PMMR consist of a central zone of intermediate signal intensity bordered by a rim of increased signal intensity. Myocardial edema can be detected on cardiac PMMR within the first 3 h after the onset of ischemia in porcine hearts. The size of myocardial edema reflects the area of ischemic injury in early acute (per-acute) myocardial infarction. This study provides evidence that cardiac PMMR is able to detect acute myocardial infarcts at an earlier stage than traditional autopsy and routine histology.
Resumo:
BACKGROUND Posttraumatic Stress Disorder (PTSD) may occur in patients after exposure to a life-threatening illness. About one out of six patients develop clinically relevant levels of PTSD symptoms after acute myocardial infarction (MI). Symptoms of PTSD are associated with impaired quality of life and increase the risk of recurrent cardiovascular events. The main hypothesis of the MI-SPRINT study is that trauma-focused psychological counseling is more effective than non-trauma focused counseling in preventing posttraumatic stress after acute MI. METHODS/DESIGN The study is a single-center, randomized controlled psychological trial with two active intervention arms. The sample consists of 426 patients aged 18 years or older who are at 'high risk' to develop clinically relevant posttraumatic stress symptoms. 'High risk' patients are identified with three single-item questions with a numeric rating scale (0 to 10) asking about 'pain during MI', 'fear of dying until admission' and/or 'worrying and feeling helpless when being told about having MI'. Exclusion criteria are emergency heart surgery, severe comorbidities, current severe depression, disorientation, cognitive impairment and suicidal ideation. Patients will be randomly allocated to a single 45-minute counseling session targeting either specific MI-triggered traumatic reactions (that is, the verum intervention) or the general role of psychosocial stress in coronary heart disease (that is, the control intervention). The session will take place in the coronary care unit within 48 hours, by the bedside, after patients have reached stable circulatory conditions. Each patient will additionally receive an illustrated information booklet as study material. Sociodemographic factors, psychosocial and medical data, and cardiometabolic risk factors will be assessed during hospitalization. The primary outcome is the interviewer-rated posttraumatic stress level at three-month follow-up, which is hypothesized to be at least 20% lower in the verum group than in the control group using the t-test. Secondary outcomes are posttraumatic stress levels at 12-month follow-up, and psychosocial functioning and cardiometabolic risk factors at both follow-up assessments. DISCUSSION If the verum intervention proves to be effective, the study will be the first to show that a brief trauma-focused psychological intervention delivered within a somatic health care setting can reduce the incidence of posttraumatic stress in acute MI patients. TRIAL REGISTRATION ClinicalTrials.gov: NCT01781247.
Resumo:
BACKGROUND Pathology studies have shown delayed arterial healing in culprit lesions of patients with acute coronary syndrome (ACS) compared with stable coronary artery disease (CAD) after placement of drug-eluting stents (DES). It is unknown whether similar differences exist in-vivo during long-term follow-up. Using optical coherence tomography (OCT), we assessed differences in arterial healing between patients with ACS and stable CAD five years after DES implantation. METHODS AND RESULTS A total of 88 patients comprised of 53 ACS lesions with 7864 struts and 35 stable lesions with 5298 struts were suitable for final OCT analysis five years after DES implantation. The analytical approach was based on a hierarchical Bayesian random-effects model. OCT endpoints were strut coverage, malapposition, protrusion, evaginations and cluster formation. Uncovered (1.7% vs. 0.7%, adjusted p=0.041) or protruding struts (0.50% vs. 0.13%, adjusted p=0.038) were more frequent among ACS compared with stable CAD lesions. A similar trend was observed for malapposed struts (1.33% vs. 0.45%, adj. p=0.072). Clusters of uncovered or malapposed/protruding struts were present in 34.0% of ACS and 14.1% of stable patients (adj. p=0.041). Coronary evaginations were more frequent in patients with ST-elevation myocardial infarction compared with stable CAD patients (0.16 vs. 0.13 per cross section, p=0.027). CONCLUSION Uncovered, malapposed, and protruding stent struts as well as clusters of delayed healing may be more frequent in culprit lesions of ACS compared with stable CAD patients late after DES implantation. Our observational findings suggest a differential healing response attributable to lesion characteristics of patients with ACS compared with stable CAD in-vivo.
Resumo:
BACKGROUND Elevated resting heart rate is known to be detrimental to morbidity and mortality in cardiovascular disease, though its effect in patients with ischemic stroke is unclear. We analyzed the effect of baseline resting heart rate on myocardial infarction (MI) in patients with a recent noncardioembolic cerebral ischemic event participating in PERFORM. METHODS We compared fatal or nonfatal MI using adjusted Cox proportional hazards models for PERFORM patients with baseline heart rate <70 bpm (n=8178) or ≥70 bpm (n=10,802). In addition, heart rate was analyzed as a continuous variable. Other cerebrovascular and cardiovascular outcomes were also explored. RESULTS Heart rate ≥70 bpm was associated with increased relative risk for fatal or nonfatal MI (HR 1.32, 95% CI 1.03-1.69, P=0.029). For every 5-bpm increase in heart rate, there was an increase in relative risk for fatal and nonfatal MI (11.3%, P=0.0002). Heart rate ≥70 bpm was also associated with increased relative risk for a composite of fatal or nonfatal ischemic stroke, fatal or nonfatal MI, or other vascular death (excluding hemorrhagic death) (P<0001); vascular death (P<0001); all-cause mortality (P<0001); and fatal or nonfatal stroke (P=0.04). For every 5-bpm increase in heart rate, there were increases in relative risk for fatal or nonfatal ischemic stroke, fatal or nonfatal MI, or other vascular death (4.7%, P<0.0001), vascular death (11.0%, P<0.0001), all-cause mortality (8.0%, P<0.0001), and fatal and nonfatal stroke (2.4%, P=0.057). CONCLUSION Elevated heart rate ≥70 bpm places patients with a noncardioembolic cerebral ischemic event at increased risk for MI.
Resumo:
BACKGROUND To investigate the performance of the MI Sxscore in a multicentre randomised trial of patients undergoing primary percutaneous coronary intervention (PPCI). METHODS AND RESULTS The MI Sxscore was prospectively determined among 1132 STEMI patients enrolled into the COMFORTABLE AMI trial, which randomised patients to treatment with bare-metal (BMS) or biolimus-eluting (BES) stents. Patient- (death, myocardial infarction, any revascularisation) and device-oriented (cardiac death, target-vessel MI, target lesion revascularisation) major adverse cardiac events (MACEs) were compared across MI Sxscore tertiles and according to stent type. The median MI SXscore was 14 (IQR: 9-21). Patients were divided into tertiles of Sxscorelow (≤10), Sxscoreintermediate (11-18) and Sxscorehigh (≥19). At 1year, patient-oriented MACE occurred in 15% of the Sxscorehigh, 9% of the Sxscoreintermediate and 5% of the Sxscorelow tertiles (p<0.001), whereas device-oriented MACE occurred in 8% of the Sxscorehigh, 6% of the Sxscoreintermediate and 4% of the Sxscorelow tertiles (p=0.03). Addition of the MI Sxscore to the TIMI risk score improved prediction of patient- (c-statistic value increase from 0.63 to 0.69) and device-oriented MACEs (c-statistic value increase from 0.65 to 0.70). Differences in the risk for device-oriented MACE between BMS and BES were evident among Sxscorehigh (13% vs. 4% HR 0.33 (0.15-0.74), p=0.007 rather than those in Sxscorelow: 4% vs. 3% HR 0.68 (0.24-1.97), p=0.48) tertiles. CONCLUSIONS The MI Sxscore allows risk stratification of patient- and device-oriented MACEs among patients undergoing PPCI. The addition of the MI Sxscore to the TIMI risk score is of incremental prognostic value among patients undergoing PPCI for treatment of STEMI.
Resumo:
Background Biodegradable polymers for release of antiproliferative drugs from metallic drug-eluting stents (DES) aim to improve long-term vascular healing and efficacy. We designed a large scale clinical trial to compare a novel thin strut, cobalt chromium DES with silicon carbide coating releasing sirolimus from a biodegradable polymer (Orsiro, O-SES) with the durable polymer-based Xience Prime everolimus-eluting stent (X-EES) in an all-comers patient population. Design The multicenter BIOSCIENCE trial (NCT01443104) randomly assigned 2,119 patients to treatment with biodegradable polymer SES or durable polymer EES at 9 sites in Switzerland. Patients with chronic stable coronary artery disease or acute coronary syndromes, including non-ST-elevation and ST-elevation myocardial infarction, were eligible for the trial if they had at least one lesion with a diameter stenosis >50% appropriate for coronary stent implantation. The primary endpoint target lesion failure (TLF) is a composite of cardiac death, target-vessel myocardial infarction, and clinically-driven target lesion revascularization within 12 months. Assuming a TLF rate of 8% at 12 months in both treatment arms and accepting 3.5% as a margin for non-inferiority, inclusion of 2,060 patients would provide 80% power to detect non-inferiority of the biodegradable polymer SES compared with the durable polymer EES at a one-sided type I error of 0.05. Clinical follow-up will be continued through five years. Conclusion The BIOSCIENCE trial will determine whether the biodegradable polymer SES is non-inferior to the durable polymer EES with respect to TLF.
Resumo:
Aims: The aim of this study was to identify predictors of adverse events among patients with ST-elevation myocardial infarction (STEMI) undergoing contemporary primary percutaneous coronary intervention (PCI). Methods and results: Individual data of 2,655 patients from two primary PCI trials (EXAMINATION, N=1,504; COMFORTABLE AMI, N=1,161) with identical endpoint definitions and event adjudication were pooled. Predictors of all-cause death or any reinfarction and definite stent thrombosis (ST) and target lesion revascularisation (TLR) outcomes at one year were identified by multivariable Cox regression analysis. Killip class III or IV was the strongest predictor of all-cause death or any reinfarction (OR 5.11, 95% CI: 2.48-10.52), definite ST (OR 7.74, 95% CI: 2.87-20.93), and TLR (OR 2.88, 95% CI: 1.17-7.06). Impaired left ventricular ejection fraction (OR 4.77, 95% CI: 2.10-10.82), final TIMI flow 0-2 (OR 1.93, 95% CI: 1.05-3.54), arterial hypertension (OR 1.69, 95% CI: 1.11-2.59), age (OR 1.68, 95% CI: 1.41-2.01), and peak CK (OR 1.25, 95% CI: 1.02-1.54) were independent predictors of all-cause death or any reinfarction. Allocation to treatment with DES was an independent predictor of a lower risk of definite ST (OR 0.35, 95% CI: 0.16-0.74) and any TLR (OR 0.34, 95% CI: 0.21-0.54). Conclusions: Killip class remains the strongest predictor of all-cause death or any reinfarction among STEMI patients undergoing primary PCI. DES use independently predicts a lower risk of TLR and definite ST compared with BMS. The COMFORTABLE AMI trial is registered at: http://www.clinicaltrials.gov/ct2/show/NCT00962416. The EXAMINATION trial is registered at: http://www.clinicaltrials.gov/ct2/show/NCT00828087.