249 resultados para SPECT-CT
Resumo:
The conversion of computed tomography (CT) numbers into material composition and mass density data influences the accuracy of patient dose calculations in Monte Carlo treatment planning (MCTP). The aim of our work was to develop a CT conversion scheme by performing a stoichiometric CT calibration. Fourteen dosimetrically equivalent tissue subsets (bins), of which ten bone bins, were created. After validating the proposed CT conversion scheme on phantoms, it was compared to a conventional five bin scheme with only one bone bin. This resulted in dose distributions D(14) and D(5) for nine clinical patient cases in a European multi-centre study. The observed local relative differences in dose to medium were mostly smaller than 5%. The dose-volume histograms of both targets and organs at risk were comparable, although within bony structures D(14) was found to be slightly but systematically higher than D(5). Converting dose to medium to dose to water (D(14) to D(14wat) and D(5) to D(5wat)) resulted in larger local differences as D(5wat) became up to 10% higher than D(14wat). In conclusion, multiple bone bins need to be introduced when Monte Carlo (MC) calculations of patient dose distributions are converted to dose to water.
Resumo:
PURPOSE: To determine the radiation dose delivered to organs during standard computed tomographic (CT) examination of the trunk. MATERIALS AND METHODS: In vivo locations and sizes of specific body organs were determined from CT images of patients who underwent examinations. The corresponding CT investigations were then simulated on an anthropomorphic phantom. The resulting doses were measured at 70 different sites inside the phantom by using thermoluminescent dosimeters. On the basis of measurements of free-in-air air kerma at the rotation axis of the CT gantry, conversion factors were calculated so that measurements could be used with different models of CT equipment. RESULTS: Starting from the dose values recorded, the mean organ doses were determined for 21 organs. The skin received 22-36 mGy; the lungs, less than 1-18 mGy; the kidneys, 7-24 mGy; and the ovaries, less than 1-19 mGy, depending on the type of CT examination performed. CONCLUSION: These values are high compared with other x-ray examinations and should be minimized as much as possible. The number of tomographic sections obtained should be kept as low as possible according to diagnostic need.
Resumo:
Similarity measure is one of the main factors that affect the accuracy of intensity-based 2D/3D registration of X-ray fluoroscopy to CT images. Information theory has been used to derive similarity measure for image registration leading to the introduction of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measure only takes intensity values into account without considering spatial information and its robustness is questionable. Previous attempt to incorporate spatial information into mutual information either requires computing the entropy of higher dimensional probability distributions, or is not robust to outliers. In this paper, we show how to incorporate spatial information into mutual information without suffering from these problems. Using a variational approximation derived from the Kullback-Leibler bound, spatial information can be effectively incorporated into mutual information via energy minimization. The resulting similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experimental results are presented on datasets of two applications: (a) intra-operative patient pose estimation from a few (e.g. 2) calibrated fluoroscopic images, and (b) post-operative cup alignment estimation from single X-ray radiograph with gonadal shielding.
Resumo:
The optimal temporal window of intravenous (IV) computed tomography (CT) cholangiography was prospectively determined. Fifteen volunteers (eight women, seven men; mean age, 38 years) underwent dynamic CT cholangiography. Two unenhanced images were acquired at the porta hepatis. Starting 5 min after initiation of IV contrast infusion (20 ml iodipamide meglumine 52%), 15 pairs of images at 5-min intervals were obtained. Attenuation of the extrahepatic bile duct (EBD) and the liver parenchyma was measured. Two readers graded visualization of the higher-order biliary branches. The first biliary opacification in the EBD occurred between 15 and 25 min (mean, 22.3 min +/- 3.2) after initiation of the contrast agent. Biliary attenuation plateaued between the 35- and the 75-min time points. Maximum hepatic parenchymal enhancement was 18.5 HU +/- 2.7. Twelve subjects demonstrated poor or non-visualization of higher-order biliary branches; three showed good or excellent visualization. Body weight and both biliary attenuation and visualization of the higher-order biliary branches correlated significantly (P<0.05). For peak enhancement of the biliary tree, CT cholangiography should be performed no earlier than 35 min after initiation of IV infusion. For a fixed contrast dose, superior visualization of the biliary system is achieved in subjects with lower body weight.
Resumo:
PURPOSE: To prospectively determine quantitatively and qualitatively the timing of maximal enhancement of the normal small-bowel wall by using contrast material-enhanced multi-detector row computed tomography (CT). MATERIALS AND METHODS: This HIPAA-compliant study was approved by the institutional review board. After information on radiation risk was given, written informed consent was obtained from 25 participants with no history of small-bowel disease (mean age, 58 years; 19 men) who had undergone single-level dynamic CT. Thirty seconds after the intravenous administration of contrast material, a serial dynamic acquisition, consisting of 10 images obtained 5 seconds apart, was performed. Enhancement measurements were obtained over time from the small-bowel wall and the aorta. Three independent readers qualitatively assessed small-bowel conspicuity. Quantitative and qualitative data were analyzed during the arterial phase, the enteric phase (which represented peak small-bowel mural enhancement), and the venous phase. Statistical analysis included paired Student t test and Wilcoxon signed rank test with Bonferroni correction. A P value less than .05 was used to indicate a significant difference. RESULTS: The mean time to peak enhancement of the small-bowel wall was 49.3 seconds +/- 7.7 (standard deviation) and 13.5 seconds +/- 7.6 after peak aortic enhancement. Enhancement values were highest during the enteric phase (P < .05). Regarding small-bowel conspicuity, images obtained during the enteric phase were most preferred qualitatively; there was a significant difference between the enteric and arterial phases (P < .001) but not between the enteric and venous phases (P = .18). CONCLUSION: At multi-detector row CT, peak mural enhancement of the normal small bowel occurs on average about 50 seconds after intravenous administration of contrast material or 14 seconds after peak aortic enhancement.
Resumo:
RATIONALE AND OBJECTIVES: To evaluate the effect of a modified abdominal multislice computed tomography (CT) protocol for obese patients on image quality and radiation dose. MATERIALS AND METHODS: An adult female anthropomorphic phantom was used to simulate obese patients by adding one or two 4-cm circumferential layers of fat-equivalent material to the abdominal portion. The phantom was scanned with a subcutaneous fat thickness of 0, 4, and 8 cm using the following parameters (detector configuration/beam pitch/table feed per rotation/gantry rotation time/kV/mA): standard protocol A: 16 x 0.625 mm/1.75/17.5 mm/0.5 seconds/140/380, and modified protocol B: 16 x 1.25 mm/1.375/27.5 mm/1.0 seconds/140/380. Radiation doses to six abdominal organs and the skin, image noise values, and contrast-to-noise ratios (CNRs) were analyzed. Statistical analysis included analysis of variance, Wilcoxon rank sum, and Student's t-test (P < .05). RESULTS: Applying the modified protocol B with one or two fat rings, the image noise decreased significantly (P < .05), and simultaneously, the CNR increased significantly compared with protocol A (P < .05). Organ doses significantly increased, up to 54.7%, comparing modified protocol B with one fat ring to the routine protocol A with no fat rings (P < .05). However, no significant change in organ dose was seen for protocol B with two fat rings compared with protocol A without fat rings (range -2.1% to 8.1%) (P > .05). CONCLUSIONS: Using a modified abdominal multislice CT protocol for obese patients with 8 cm or more of subcutaneous fat, image quality can be substantially improved without a significant increase in radiation dose to the abdominal organs.
Resumo:
OBJECTIVE: The purpose of our study was to evaluate the efficacy of CT histogram analysis for further characterization of lipid-poor adenomas on unenhanced CT. MATERIALS AND METHODS: One hundred thirty-two adrenal nodules were identified in 104 patients with lung cancer who underwent PET/CT. Sixty-five nodules were classified as lipid-rich adenomas if they had an unenhanced CT attenuation of less than or equal to 10 H. Thirty-one masses were classified as lipid-poor adenomas if they had an unenhanced CT attenuation greater than 10 H and stability for more than 1 year. Thirty-six masses were classified as lung cancer metastases if they showed rapid growth in 1 year (n = 27) or were biopsy-proven (n = 9). Histogram analysis was performed for all lesions to provide the mean attenuation value and percentage of negative pixels. RESULTS: All lipid-rich adenomas had more than 10% negative pixels; 51.6% of lipid-poor adenomas had more than 10% negative pixels and would have been classified as indeterminate nodules on the basis of mean attenuation alone. None of the metastases had more than 10% negative pixels. Using an unenhanced CT mean attenuation threshold of less than 10 H yielded a sensitivity of 68% and specificity of 100% for the diagnosis of an adenoma. Using an unenhanced CT threshold of more than 10% negative pixels yielded a sensitivity of 84% and specificity of 100% for the diagnosis of an adenoma. CONCLUSION: CT histogram analysis is superior to mean CT attenuation analysis for the evaluation of adrenal nodules and may help decrease referrals for additional imaging or biopsy.
Resumo:
The effect of varying injection rates of a saline chaser on aortic enhancement in computed tomography (CT) angiography was determined. Single-level, dynamic CT images of a physiological flow phantom were acquired between 0 and 50 s after initiation of contrast medium injection. Four injection protocols were applied with identical contrast medium administration (150 ml injected at 5 ml/s). For baseline protocol A, no saline chaser was applied. For protocols B, C, and D, 50 ml of saline was injected at 2.5 ml/s, 5 ml/s, and 10 ml/s, respectively. Injecting the saline chaser at twice the rate as the contrast medium yielded significantly higher peak aortic enhancement values than injecting the saline at half or at the same rate as the contrast medium (P < 0.05). Average peak aortic enhancement (HU) measured 214, 214, 218, and 226 for protocols A, B, C, and D, respectively. The slower the saline-chaser injection rate, the longer the duration of 90% peak enhancement: 13.6, 12.2, and 11.7 s for protocols B, C, and D, respectively (P > 0.05). In CT angiography, saline chaser injected at twice the rate as the contrast medium leads to increased peak aortic enhancement and saline chaser injected at half the rate tends towards prolonging peak aortic enhancement plateau.
Resumo:
PURPOSE: To prospectively evaluate, for the depiction of simulated hypervascular liver lesions in a phantom, the effect of a low tube voltage, high tube current computed tomographic (CT) technique on image noise, contrast-to-noise ratio (CNR), lesion conspicuity, and radiation dose. MATERIALS AND METHODS: A custom liver phantom containing 16 cylindric cavities (four cavities each of 3, 5, 8, and 15 mm in diameter) filled with various iodinated solutions to simulate hypervascular liver lesions was scanned with a 64-section multi-detector row CT scanner at 140, 120, 100, and 80 kVp, with corresponding tube current-time product settings at 225, 275, 420, and 675 mAs, respectively. The CNRs for six simulated lesions filled with different iodinated solutions were calculated. A figure of merit (FOM) for each lesion was computed as the ratio of CNR2 to effective dose (ED). Three radiologists independently graded the conspicuity of 16 simulated lesions. An anthropomorphic phantom was scanned to evaluate the ED. Statistical analysis included one-way analysis of variance. RESULTS: Image noise increased by 45% with the 80-kVp protocol compared with the 140-kVp protocol (P < .001). However, the lowest ED and the highest CNR were achieved with the 80-kVp protocol. The FOM results indicated that at a constant ED, a reduction of tube voltage from 140 to 120, 100, and 80 kVp increased the CNR by factors of at least 1.6, 2.4, and 3.6, respectively (P < .001). At a constant CNR, corresponding reductions in ED were by a factor of 2.5, 5.5, and 12.7, respectively (P < .001). The highest lesion conspicuity was achieved with the 80-kVp protocol. CONCLUSION: The CNR of simulated hypervascular liver lesions can be substantially increased and the radiation dose reduced by using an 80-kVp, high tube current CT technique.
Resumo:
OBJECTIVE: Postmortem examination of chest trauma is an important domain in forensic medicine, which is today performed using autopsy. Since the implementation of cross-sectional imaging methods in forensic medicine such as computed tomography (CT) and magnetic resonance imaging (MRI), a number of advantages in comparison with autopsy have been described. Within the scope of validation of cross-sectional radiology in forensic medicine, the comparison of findings of postmortem imaging and autopsy in chest trauma was performed. METHODS: This retrospective study includes 24 cases with chest trauma that underwent postmortem CT, MRI, and autopsy. Two board-certified radiologists, blind to the autopsy findings, evaluated the radiologic data independently. Each radiologist interpreted postmortem CT and MRI data together for every case. The comparison of the results of the radiologic assessment with the autopsy and a calculation of interobserver discrepancy was performed. RESULTS: Using combined CT and MRI, between 75% and 100% of the investigated findings, except for hemomediastinum (70%), diaphragmatic ruptures (50%; n=2) and heart injury (38%), were discovered. Although the sensitivity and specificity regarding pneumomediastinum, pneumopericardium, and pericardial effusion were not calculated, as these findings were not mentioned at the autopsy, these findings were clearly seen radiologically. The averaged interobserver concordance was 90%. CONCLUSION: The sensitivity and specificity of our results demonstrate that postmortem CT and MRI are useful diagnostic methods for assessing chest trauma in forensic medicine as a supplement to autopsy. Further radiologic-pathologic case studies are necessary to define the role of postmortem CT and MRI as a single examination modality.
Resumo:
INTRODUCTION: Recent advances in medical imaging have brought post-mortem minimally invasive computed tomography (CT) guided percutaneous biopsy to public attention. AIMS: The goal of the following study was to facilitate and automate post-mortem biopsy, to suppress radiation exposure to the investigator, as may occur when tissue sampling under computer tomographic guidance, and to minimize the number of needle insertion attempts for each target for a single puncture. METHODS AND MATERIALS: Clinically approved and post-mortem tested ACN-III biopsy core needles (14 gauge x 160 mm) with an automatic pistol device (Bard Magnum, Medical Device Technologies, Denmark) were used for probe sampling. The needles were navigated in gelatine/peas phantom, ex vivo porcine model and subsequently in two human bodies using a navigation system (MEM centre/ISTB Medical Application Framework, Marvin, Bern, Switzerland) with guidance frame and a CT (Emotion 6, Siemens, Germany). RESULTS: Biopsy of all peas could be performed within a single attempt. The average distance between the inserted needle tip and the pea centre was 1.4mm (n=10; SD 0.065 mm; range 0-2.3 mm). The targets in the porcine liver were also accurately punctured. The average of the distance between the needle tip and the target was 0.5 mm (range 0-1 mm). Biopsies of brain, heart, lung, liver, pancreas, spleen, and kidney were performed on human corpses. For each target the biopsy needle was only inserted once. The examination of one body with sampling of tissue probes at the above-mentioned locations took approximately 45 min. CONCLUSIONS: Post-mortem navigated biopsy can reliably provide tissue samples from different body locations. Since the continuous update of positional data of the body and the biopsy needle is performed using optical tracking, no control CT images verifying the positional data are necessary and no radiation exposure to the investigator need be taken into account. Furthermore, the number of needle insertions for each target can be minimized to a single one with the ex vivo proven adequate accuracy and, in contrast to conventional CT guided biopsy, the insertion angle may be oblique. Navigation for minimally invasive tissue sampling is a useful addition to post-mortem CT guided biopsy.
Resumo:
OBJECTIVE: The objective of our study was to establish a standardized procedure for postmortem whole-body CT-based angiography with lipophilic and hydrophilic contrast media solutions and to compare the results of these two methods. MATERIALS AND METHODS: Minimally invasive postmortem CT angiography was performed on 10 human cadavers via access to the femoral blood vessels. Separate perfusion of the arterial and venous systems was established with a modified heart-lung machine using a mixture of an oily contrast medium and paraffin (five cases) and a mixture of a water-soluble contrast medium with polyethylene glycol (PEG) 200 in the other five cases. Imaging was executed with an MDCT scanner. RESULTS: The minimally invasive femoral approach to the vascular system provided a good depiction of lesions of the complete vascular system down to the level of the small supplying vessels. Because of the enhancement of well-vascularized tissues, angiography with the PEG-mixed contrast medium allowed the detection of tissue lesions and the depiction of vascular abnormalities such as pulmonary embolisms or ruptures of the vessel wall. CONCLUSION: The angiographic method with a water-soluble contrast medium and PEG as a contrast-agent dissolver showed a clearly superior quality due to the lack of extravasation through the gastrointestinal vascular bed and the enhancement of soft tissues (cerebral cortex, myocardium, and parenchymal abdominal organs). The diagnostic possibilities of these findings in cases of antemortem ischemia of these tissues are not yet fully understood.
Resumo:
To determine whether neutral contrast agents with water-equivalent intraluminal attenuation can improve delineation of the bowel wall and increase overall image quality for a non-selected patient population, a neutral oral contrast agent (3% mannitol) was administered to 100 patients referred for abdominal multidetector row computed tomography (MDCT). Their results were compared with those of 100 patients given a positive oral contrast agent. Qualitative and quantitative measurements were done on different levels of the gastrointestinal tract by three experienced readers. Patients given the neutral oral contrast agent showed significant better qualitative results for bowel distension (P < 0.001), homogeneity of the luminal content (P < 0.001), delineation of the bowel-wall to the lumen (P < 0.001) and to the mesentery (P < 0.001) and artifacts (P < 0.001), leading to a significant better overall image quality (P < 0.001) than patients receiving positive oral contrast medium. The quantitative measurements revealed significant better distension (P < 0.001) and wall to lumen delineation (P < 0.001) for the patients receiving neutral oral contrast medium. The present results show that the neutral oral contrast agent (mannitol) produced better distension, better homogeneity and better delineation of the bowel wall leading to a higher overall image quality than the positive oral contrast medium in a non-selected patient population.
Resumo:
BACKGROUND AND PURPOSE: Computer-assisted navigation is increasingly used in functional endoscopic sinus surgery (FESS) to prevent injury to vital structures, necessitating preparative CT and, thus, radiation exposure. The purpose of our study was to investigate currently used radiation doses for CT in computer-assisted navigation in sinus surgery (CAS-CT) and to assess minimal doses required. MATERIALS AND METHODS: A questionnaire inquiring about dose parameters used for CAS-CT was sent to 30 radiologic institutions. The feasibility of low-dose registration was tested with a phantom. The influence of CAS-CT dose on technical accuracy and on the practical performance of 5 ear, nose, and throat (ENT) surgeons was evaluated with cadaver heads. RESULTS: The questionnaire response rate was 63%. Variation between minimal and maximal dose used for CAS-CT was 18-fold. Phantom registration was possible with doses as low as 1.1 mGy. No dose dependence on technical accuracy was found. ENT surgeons were able to identify anatomic landmarks on scans with a dose as low as 3.1 mGy. CONCLUSIONS: The vast dose difference between institutions mirrors different attitudes toward image quality and radiation-protection issues rather than being technically founded, and many patients undergo CAS-CT at higher doses than necessary. The only limit for dose reduction in CT for computer-assisted endoscopic sinus surgery is the ENT surgeon's ability to cope with impaired image quality, whereas there is no technically justified lower dose limit. We recommend, generally, doses used for the typical diagnostic low-dose sinus CT (120 kV/20-50 mAs). When no diagnostic image quality is needed, even a reduction down to a third is possible.