179 resultados para Performance of High Energy Physics detectors
Resumo:
We have recently derived a factorization formula for the Higgs-boson production cross section in the presence of a jet veto, which allows for a systematic resummation of large Sudakov logarithms of the form αn s lnm(pveto T /mH), along with the large virtual corrections known to affect also the total cross section. Here we determine the ingredients entering this formula at two-loop accuracy. Specifically, we compute the dependence on the jet-radius parameter R, which is encoded in the two-loop coefficient of the collinear anomaly, by means of a direct, fully analytic calculation in the framework of soft-collinear effective theory. We confirm the result obtained by Banfi et al. from a related calculation in QCD, and demonstrate that factorization-breaking, soft-collinear mixing effects do not arise at leading power in pveto T /mH, even for R = O(1). In addition, we extract the two-loop collinear beam functions numerically. We present detailed numerical predictions for the jet-veto cross section with partial next-to-next-to-next-to-leading logarithmic accuracy, matched to the next-to-next-to-leading order cross section in fixed-order perturbation theory. The only missing ingredients at this level of accuracy are the three-loop anomaly coefficient and the four-loop cusp anomalous dimension, whose numerical effects we estimate to be small.
Resumo:
We study Chern-Simons theory on 3-manifolds M that are circle-bundles over 2-dimensional orbifolds Σ by the method of Abelianisation. This method, which completely sidesteps the issue of having to integrate over the moduli space of non-Abelian flat connections, reduces the complete partition function of the non-Abelian theory on M to a 2-dimensional Abelian theory on the orbifold Σ, which is easily evaluated.
Resumo:
The vector channel spectral function and the dilepton production rate from a QCD plasma at a temperature above a few hundred MeV are evaluated up to next-to-leading order (NLO) including their dependence on a non-zero momentum with respect to the heat bath. The invariant mass of the virtual photon is taken to be in the range K2 ~ (πT)2 ~ (1GeV)2, generalizing previous NLO results valid for K2 ≫ (πT)2. In the opposite regime 0 < K2 ≪ (πT)2 the loop expansion breaks down, but agrees nevertheless in order of magnitude with a previous result obtained through resummations. Ways to test the vector spectral function through comparisons with imaginary-time correlators measured on the lattice are discussed.
Resumo:
The bulk viscosity of thermalized QCD matter at temperatures above a few hundred MeV could be significantly influenced by charm quarks because their contribution arises four perturbative orders before purely gluonic effects. In an attempt to clarify the challenges of a lattice study, we determine the relevant imaginary-time correlator (of massive scalar densities) up to NLO in perturbation theory, and compare with existing data. We find discrepancies much larger than in the vector channel; this may hint, apart from the importance of taking a continuum limit, to larger non-perturbative effects in the scalar channel. We also recall how a transport peak related to the scalar density spectral function encodes non-perturbative information concerning the charm quark chemical equilibration rate close to equilibrium.
Resumo:
The production rate of right-handed neutrinos from a Standard Model plasma at a temperature above a hundred GeV is evaluated up to NLO in Standard Model couplings. The results apply in the so-called relativistic regime, referring parametrically to a mass M ~ πT, generalizing thereby previous NLO results which only apply in the non-relativistic regime M ≫ πT. The non-relativistic expansion is observed to converge for M ≳ 15T, but the smallness of any loop corrections allows it to be used in practice already for M ≳ 4T. In the latter regime any non-covariant dependence of the differential rate on the spatial momentum is shown to be mild. The loop expansion breaks down in the ultrarelativistic regime M ≪ πT, but after a simple mass resummation it nevertheless extrapolates reasonably well towards a result obtained previously through complete LPM resummation, apparently confirming a strong enhancement of the rate at high temperatures (which facilitates chemical equilibration). When combined with other ingredients the results may help to improve upon the accuracy of leptogenesis computations operating above the electroweak scale.
Resumo:
We consider the 2d XY Model with topological lattice actions, which are invariant against small deformations of the field configuration. These actions constrain the angle between neighbouring spins by an upper bound, or they explicitly suppress vortices (and anti-vortices). Although topological actions do not have a classical limit, they still lead to the universal behaviour of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition — at least up to moderate vortex suppression. In the massive phase, the analytically known Step Scaling Function (SSF) is reproduced in numerical simulations. However, deviations from the expected universal behaviour of the lattice artifacts are observed. In the massless phase, the BKT value of the critical exponent ηc is confirmed. Hence, even though for some topological actions vortices cost zero energy, they still drive the standard BKT transition. In addition we identify a vortex-free transition point, which deviates from the BKT behaviour.
Resumo:
Using methods from effective field theory, we have recently developed a novel, systematic framework for the calculation of the cross sections for electroweak gauge-boson production at small and very small transverse momentum q T , in which large logarithms of the scale ratio m V /q T are resummed to all orders. This formalism is applied to the production of Higgs bosons in gluon fusion at the LHC. The production cross section receives logarithmically enhanced corrections from two sources: the running of the hard matching coefficient and the collinear factorization anomaly. The anomaly leads to the dynamical generation of a non-perturbative scale q∗~mHe−const/αs(mH)≈8 GeV, which protects the process from receiving large long-distance hadronic contributions. We present numerical predictions for the transverse-momentum spectrum of Higgs bosons produced at the LHC, finding that it is quite insensitive to hadronic effects.
Resumo:
We consider a flux formulation of Double Field Theory in which fluxes are dynamical and field-dependent. Gauge consistency imposes a set of quadratic constraints on the dynamical fluxes, which can be solved by truly double configurations. The constraints are related to generalized Bianchi Identities for (non-)geometric fluxes in the double space, sourced by (exotic) branes. Following previous constructions, we then obtain generalized connections, torsion and curvatures compatible with the consistency conditions. The strong constraint-violating terms needed to make contact with gauged supergravities containing duality orbits of non-geometric fluxes, systematically arise in this formulation.
Resumo:
We revise the SU(3)-invariant sector of N = 8 supergravity with dyonic SO(8) gaugings. By using the embedding tensor formalism, analytic expressions for the scalar potential, superpotential(s) and fermion mass terms are obtained as a function of the electromagnetic phase ω and the scalars in the theory. Equipped with these results, we explore non-supersymmetric AdS critical points at ω ≠ 0 for which perturbative stability could not be analysed before. The ω-dependent superpotential is then used to derive first-order flow equations and obtain new BPS domain-wall solutions at ω ≠ 0. We numerically look at steepest-descent paths motivated by the (conjectured) RG flows.
Resumo:
We construct and analyze thermal spinning giant gravitons in type II/M-theory based on spherically wrapped black branes, using the method of thermal probe branes originating from the blackfold approach. These solutions generalize in different directions recent work in which the case of thermal (non-spinning) D3-brane giant gravitons was considered, and reveal a rich phase structure with various new properties. First of all, we extend the construction to M-theory, by constructing thermal giant graviton solutions using spherically wrapped M2- and M5-branes. More importantly, we switch on new quantum numbers, namely internal spins on the sphere, which are not present in the usual extremal limit for which the brane world volume stress tensor is Lorentz invariant. We examine the effect of this new type of excitation and in particular analyze the physical quantities in various regimes, including that of small temperatures as well as low/high spin. As a byproduct we find new stationary dipole-charged black hole solutions in AdS m × S n backgrounds of type II/M-theory. We finally show, via a double scaling extremal limit, that our spinning thermal giant graviton solutions lead to a novel null-wave zero-temperature giant graviton solution with a BPS spectrum, which does not have an analogue in terms of the conventional weakly coupled world volume theory.
Resumo:
Hydrodynamics can be consistently formulated on surfaces of arbitrary co-dimension in a background space-time, providing the effective theory describing long-wavelength perturbations of black branes. When the co-dimension is non-zero, the system acquires fluid-elastic properties and constitutes what is called a fluid brane. Applying an effective action approach, the most general form of the free energy quadratic in the extrinsic curvature and extrinsic twist potential of stationary fluid brane configurations is constructed to second order in a derivative expansion. This construction generalizes the Helfrich-Canham bending energy for fluid membranes studied in theoretical biology to the case in which the fluid is rotating. It is found that stationary fluid brane configurations are characterized by a set of 3 elastic response coefficients, 3 hydrodynamic response coefficients and 1 spin response coefficient for co-dimension greater than one. Moreover, the elastic degrees of freedom present in the system are coupled to the hydrodynamic degrees of freedom. For co-dimension-1 surfaces we find a 8 independent parameter family of stationary fluid branes. It is further shown that elastic and spin corrections to (non)-extremal brane effective actions can be accounted for by a multipole expansion of the stress-energy tensor, therefore establishing a relation between the different formalisms of Carter, Capovilla-Guven and Vasilic-Vojinovic and between gravity and the effective description of stationary fluid branes. Finally, it is shown that the Young modulus found in the literature for black branes falls into the class predicted by this approach - a relation which is then used to make a proposal for the second order effective action of stationary blackfolds and to find the corrected horizon angular velocity of thin black rings.
Resumo:
The transverse broadening of an energetic jet passing through a non-Abelian plasma is believed to be described by the thermal expectation value of a light-cone Wilson loop. In this exploratory study, we measure the light-cone Wilson loop with classical lattice gauge theory simulations. We observe, as suggested by previous studies, that there are strong interactions already at short transverse distances, which may lead to more efficient jet quenching than in leading-order perturbation theory. We also verify that the asymptotics of the Wilson loop do not change qualitatively when crossing the light cone, which supports arguments in the literature that infrared contributions to jet quenching can be studied with dimensionally reduced simulations in the space-like domain. Finally we speculate on possibilities for full four-dimensional lattice studies of the same observable, perhaps by employing shifted boundary conditions in order to simulate ensembles boosted by an imaginary velocity.
Resumo:
When considering NLO corrections to thermal particle production in the “relativistic” regime, in which the invariant mass squared of the produced particle is K2 ~ (πT)2, then the production rate can be expressed as a sum of a few universal “master” spectral functions. Taking the most complicated 2-loop master as an example, a general strategy for obtaining a convergent 2-dimensional integral representation is suggested. The analysis applies both to bosonic and fermionic statistics, and shows that for this master the non-relativistic approximation is only accurate for K2 ~(8πT)2, whereas the zero-momentum approximation works surprisingly well. Once the simpler masters have been similarly resolved, NLO results for quantities such as the right-handed neutrino production rate from a Standard Model plasma or the dilepton production rate from a QCD plasma can be assembled for K2 ~ (πT)2.
Resumo:
The chemical equilibration of heavy quarks in a quark-gluon plasma proceeds via annihilation or pair creation. For temperatures T much below the heavy quark mass M, when kinetically equilibrated heavy quarks move very slowly, the annihilation in the colour singlet channel is enhanced because the quark and antiquark attract each other which increases their probability to meet, whereas the octet contribution is suppressed. This is the so-called Sommerfeld effect. It has not been taken into account in previous calculations of the chemical equilibration rate, which are therefore incomplete for T ≲ α2sM . We compute the leading-order equilibration rate in this regime; there is a large enhancement in the singlet channel, but the rate is dominated by the octet channel, and therefore the total effect is small. In the course of the computation we demonstrate how operators that represent the annihilation of heavy quarks in non-relativistic QCD can be incorporated into the imaginary-time formalism.