124 resultados para PROLACTIN-RELEASE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE Antiseptic solutions are commonly used in dentistry for a number of sterilization procedures, including harvesting of bone chips, irrigation of extraction sockets, and sterilization of osteonecrotic bone. Despite its widespread use, little information is available regarding the effects of various antiseptic solutions on bone cell viability, morphology, and the release of growth factors. MATERIALS AND METHODS The antiseptic solutions included 1) 0.5% povidone iodine (PI), 2) 0.2% chlorhexidine diguluconate (CHX), 3) 1% hydrogen peroxide (H2O2), and 4) 0.25% sodium hypochlorite (HYP). Bone samples collected from porcine mandibular cortical bone were rinsed in the antiseptic solutions for 10 minutes and assessed for cell viability using an MTS assay and protein release of transforming growth factor (TGF-β1), bone morphogenetic protein 2 (BMP2), vascular endothelial growth factor (VEGF), interleukin (IL)-1β, and receptor activator of nuclear factor κB ligand (RANKL) using an enzyme-linked immunosorbent assay at 15 minutes and 4 hours after rinsing. RESULTS After antiseptic rinsing, changes to the surface protein content showed marked alterations, with an abundant protein layer remaining on CHX-rinsed bone samples. The amount of surface protein content gradually decreased in the following order: CHX, H2O2, PI, and HYP. A similar trend was also observed for the relative cell viability from within bone samples after rinsing, with up to 6 times more viable cells found in the CHX-rinsed bone samples than in the HYP- and PI-rinsed samples. An analysis of the growth factors found that both HYP and PI had significantly lower VEGF and TGF-β1 protein release from bone samples at 15 minutes and 4 hours after rinsing compared with CHX and H2O2. A similar trend was observed for RANKL and IL-1β protein release, although no change was observed for BMP2. CONCLUSIONS The results from the present study have demonstrated that antiseptic solutions present with very different effects on bone samples after 10 minutes of rinsing. Rinsing with CHX maintained significantly higher cell viability and protein release of growth factors potent to the bone remodeling cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES The use of platelet concentrates has gained increasing awareness in recent years for regenerative procedures in modern dentistry. The aim of the present study was to compare growth factor release over time from platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and a modernized protocol for PRF, advanced-PRF (A-PRF). MATERIALS AND METHODS Eighteen blood samples were collected from six donors (3 samples each for PRP, PRF, and A-PRF). Following preparation, samples were incubated in a plate shaker and assessed for growth factor release at 15 min, 60 min, 8 h, 1 day, 3 days, and 10 days. Thereafter, growth factor release of PDGF-AA, PDGF-AB, PDGF-BB, TGFB1, VEGF, EGF, and IGF was quantified using ELISA. RESULTS The highest reported growth factor released from platelet concentrates was PDGF-AA followed by PDGF-BB, TGFB1, VEGF, and PDGF-AB. In general, following 15-60 min incubation, PRP released significantly higher growth factors when compared to PRF and A-PRF. At later time points up to 10 days, it was routinely found that A-PRF released the highest total growth factors. Furthermore, A-PRF released significantly higher total protein accumulated over a 10-day period when compared to PRP or PRF. CONCLUSION The results from the present study indicate that the various platelet concentrates have quite different release kinetics. The advantage of PRP is the release of significantly higher proteins at earlier time points whereas PRF displayed a continual and steady release of growth factors over a 10-day period. Furthermore, in general, it was observed that the new formulation of PRF (A-PRF) released significantly higher total quantities of growth factors when compared to traditional PRF. CLINICAL RELEVANCE Based on these findings, PRP can be recommended for fast delivery of growth factors whereas A-PRF is better-suited for long-term release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION During dentinogenesis, growth factors become entrapped in the dentin matrix that can later be released by demineralization. Their effect on pulpal stem cell migration, proliferation, and differentiation could be beneficial for regenerative endodontic therapies. However, precondition for success, as for conventional root canal treatment, will be sufficient disinfection of the root canal system. Various irrigation solutions and intracanal dressings are available for clinical use. The aim of this study was 2-fold: to identify a demineralizing solution suitable for growth factor release directly from dentin and to evaluate whether commonly used disinfectants for endodontic treatment will compromise this effect. METHODS Dentin disks were prepared from extracted human teeth and treated with EDTA or citric acid at different concentrations or pH for different exposure periods. The amount of transforming growth factor-β1 (TGF-β1), fibroblast growth factor 2, and vascular endothelial growth factor were quantified via enzyme-linked immunosorbent assay and visualized by gold labeling. Subsequently, different irrigation solutions (5.25% sodium hypochloride, 0.12% chlorhexidine digluconate) and intracanal dressings (corticoid-antibiotic paste, calcium hydroxide: water-based and oil-based, triple antibiotic paste, chlorhexidine gel) were tested, and the release of TGF-β1 was measured after a subsequent conditioning step with EDTA. RESULTS Conditioning with 10% EDTA at pH 7 rendered the highest amounts of TGF-β1 among all test solutions. Fibroblast growth factor 2 and vascular endothelial growth factor were detected after EDTA conditioning at minute concentrations. Irrigation with chlorhexidine before EDTA conditioning increased TGF-β1 release; sodium hypochloride had the opposite effect. All tested intracanal dressings interfered with TGF-β1 release except water-based calcium hydroxide. CONCLUSIONS Growth factors can be released directly from dentin via EDTA conditioning. The use of disinfecting solutions or medicaments can amplify or attenuate this effect.