281 resultados para Meningitis, Cerebrospinal
Resumo:
In experimental rabbit meningitis, gemifloxacin penetrated inflamed meninges well (22 to 33%) and produced excellent bactericidal activity (change in log(10) [Deltalog(10)] CFU/ml/h, -0.68 +/- 0.30 [mean and standard deviation]), even superior to that of the standard regimen of ceftriaxone plus vancomycin (-0.49 +/- 0.09 deltalog(10) CFU/ml/h), in the treatment of meningitis due to a penicillin-resistant pneumococcal strain (MIC, 4 mg/liter). Even against a penicillin- and quinolone-resistant strain, gemifloxacin showed good bactericidal activity (-0.48 +/- 0.16 deltalog(10) CFU/ml/h). The excellent antibacterial activity of gemifloxacin was also confirmed by time-kill assays over 8 h in vitro.
Resumo:
BMS 284756 penetrated well into inflamed meninges (44% +/- 11%) and produced good bactericidal activity (-0.82 +/- 0.22 Delta log(10) CFU/ml. h) in the treatment of experimental meningitis in rabbits due to a penicillin-sensitive strain. BMS 284756 monotherapy had a greater potency than the standard regimen of ceftriaxone and vancomycin (-0.49 +/- 0.08 Delta log(10) CFU/ml. h) against a penicillin-resistant strain (MIC, 4 mg/liter). Even against a penicillin- and quinolone-resistant strain, BMS 284756 showed good bactericidal activity (-0.52 +/- 0.12 Delta log(10) CFU/ml. h). The antibacterial activity of BMS 284756 was confirmed by time-killing assays over 8 h in vitro.
Resumo:
Matrix metalloproteinases (MMPs) and tumour necrosis factor alpha (TNF-alpha) converting enzyme (TACE) contribute synergistically to the pathophysiology of bacterial meningitis. TACE proteolytically releases several cell-surface proteins, including the proinflammatory cytokine TNF-alpha and its receptors. TNF-alpha in turn stimulates cells to produce active MMPs, which facilitate leucocyte extravasation and brain oedema by degradation of extracellular matrix components. In the present time-course studies of pneumococcal meningitis in infant rats, MMP-8 and -9 were 100- to 1000-fold transcriptionally upregulated, both in CSF cells and in brain tissue. Concentrations of TNF-alpha and MMP-9 in CSF peaked 12 h after infection and were closely correlated. Treatment with BB-1101 (15 mg/kg subcutaneously, twice daily), a hydroxamic acid-based inhibitor of MMP and TACE, downregulated the CSF concentration of TNF-alpha and decreased the incidences of seizures and mortality. Therapy with BB-1101, together with antibiotics, attenuated neuronal necrosis in the cortex and apoptosis in the hippocampus when given as a pretreatment at the time of infection and also when administration was started 18 h after infection. Functionally, the neuroprotective effect of BB-1101 preserved learning performance of rats assessed 3 weeks after the disease had been cured. Thus, combined inhibition of MMP and TACE offers a novel therapeutic strategy to prevent brain injury and neurological sequelae in bacterial meningitis.
Resumo:
The effect of adjuvant therapy with the radical scavenger alpha-phenyl-tert-butyl nitrone (PBN; 100 mg/kg given intraperitoneally every 8 h for 5 days) on brain injury and learning function was evaluated in an infant rat model of pneumococcal meningitis. Meningitis led to cortical necrotic injury (median, 3.97% [range, 0%-38.9%] of the cortex), which was reduced to a median of 0% (range, 0%-30.9%) of the cortex (P<.001) by PBN. However, neuronal apoptosis in the hippocampal dentate gyrus was increased by PBN, compared with that by saline (median score, 1.15 [range, 0.04-1.73] vs. 0.31 [range, 0-0.92]; P<.001). Learning function 3 weeks after cured infection, as assessed by the Morris water maze, was decreased, compared with that in uninfected control animals (P<.001). Parallel to the increase in hippocampal apoptosis, PBN further impaired learning in infected animals, compared with that in saline-treated animals (P<.02). These results contrast with those of an earlier study, in which PBN reduced cortical and hippocampal neuronal injury in group B streptococcal meningitis. Thus, in pneumococcal meningitis, antioxidant therapy with PBN aggravates hippocampal injury and learning deficits.
Resumo:
Linezolid, a new oxazolidinone antibiotic, showed good penetration (38+/-4%) into the meninges of rabbits with levels in the CSF ranging from 9.5 to 1.8 mg/L after two i.v. injections (20 mg/kg). Linezolid was clearly less effective than ceftriaxone against a penicillin-sensitive pneumococcal strain. Against a penicillin-resistant strain, linezolid had slightly inferior killing rates compared with the standard regimen (ceftriaxone combined with vancomycin). In vitro, linezolid was marginally bactericidal at concentrations above the MIC (5 x and 10 x MIC).
Resumo:
Grepafloxacin, a new fluoroquinolone, produced bactericidal activity comparable to that of vancomycin and ceftriaxone in the treatment in rabbits of meningitis caused by a pneumococcal strain highly resistant to penicillin (MIC 4 mg/L) (triangle uplog(10) cfu/mL*h for grepafloxacin, -0.32 +/- 0.15; dose, 15 mg/kg iv; triangle uplog(10) cfu/mL*h for vancomycin, -0.39 +/- 0.18; dose, 2 x 20 mg/kg iv; triangle uplog(10) cfu/mL*h for ceftriaxone, -0.32 +/- 0. 12; dose, 125 mg/kg iv). Higher doses of grepafloxacin (30 mg/kg and 2 x 50 mg/kg) did not improve the killing rates. The combination of grepafloxacin with vancomycin was not significantly superior to monotherapies (P > 0.05). In vitro, grepafloxacin was bactericidal at concentrations above the MIC. Using concentrations around the MIC, addition of vancomycin to grepafloxacin showed synergic activity.
Resumo:
Multiplication of bacteria within the central nervous system compartment triggers a host response with an overshooting inflammatory reaction which leads to brain parenchyma damage. Some of the inflammatory and neurotoxic mediators involved in the processes leading to neuronal injury during bacterial meningitis have been identified in recent years. As a result, the therapeutic approach to the disease has widened from eradication of the bacterial pathogen with antibiotics to attenuation of the detrimental effects of host defences. Corticosteroids represent an example of the adjuvant therapeutic strategies aimed at downmodulating excessive inflammation in the infected central nervous system. Pathophysiological concepts derived from an experimental rat model of bacterial meningitis revealed possible therapeutic strategies for prevention of brain damage. The insights gained led to the evaluation of new therapeutic modalities such as anticytokine agents, matrix metalloproteinase inhibitors, antioxidants, and antagonists of endothelin and glutamate. Bacterial meningitis is still associated with persistent neurological sequelae in approximately one third of surviving patients. Future research in the model will evaluate whether the neuroprotective agents identified so far have the potential to attenuate learning disabilities as a long-term consequence of bacterial meningitis.
Resumo:
The bactericidal activities of monotherapy with trovafloxacin (-0.37 +/- 0.15 Delta log(10) CFU/ml. h), vancomycin (-0.32 +/- 0.12 Delta log(10) CFU/ml. h), and ceftriaxone (-0.36 +/- 0.19 Delta log(10) CFU/ml. h) for the treatment of experimental meningitis in rabbits due to a clinical penicillin-resistant pneumococcal strain (MIC, 4 mg/liter) were similar. The combination of ceftriaxone with trovafloxacin considerably improved the killing rates (-0.67 +/- 0.16 Delta log(10) CFU/ml. h) and was slightly superior to ceftriaxone with vancomycin (killing rate, -0.53 +/- 0. 22 Delta log(10) CFU/ml. h), the regimen most commonly used in clinical practice. In vitro, synergy was demonstrated between ceftriaxone and trovafloxacin by the checkerboard method (fractional inhibitory concentration index, 0.5) and by time-killing assays over 8 h.
Resumo:
Reactive oxygen intermediates mediate brain injury in bacterial meningitis. Several antioxidant drugs are clinically available, including N-acetylcysteine (NAC), deferoxamine (DFO), and trylizad-mesylate (TLM). The present study evaluated whether these antioxidants are beneficial in a model of pneumococcal meningitis. Eleven-day-old rats were infected intracisternally with Streptococcus pneumoniae and randomized to intraperitoneal treatment every 8 h with NAC (200 mg/kg), DFO (100 mg/kg), TLM (10 mg/kg), or saline (250 microL). TLM-treated animals showed a significantly reduced mortality compared with controls (P<.03). Meningitis led to extensive cortical injury at 22+/-2.2 h after infection (median, 14. 6% of cortex; range, 0-61.1%). Injury was significantly (P<.01) reduced to 1.1% (range, 0-34.6%) by NAC, to 2.3% (range, 0-19.6%) by DFO, and to 0.2% (range, 0-36.9%) by TLM (the difference was not significant among the 3 groups). None of the drugs reduced hippocampal injury. Thus, several clinically used antioxidants reduced cortical injury in experimental pneumococcal meningitis.
Resumo:
In a rabbit model of meningitis caused by a pneumococcus highly resistant to penicillin (MIC, 4 microg/ml), meropenem, a broad-spectrum carbapenem, was bactericidal (-0.48+/-0.14 deltalog10 cfu/ml h) and slightly superior to ceftriaxone (-0.34+/-0.23 deltalog10 cfu/ml x h) and vancomycin (-0.39+/-0.19 deltalog10 cfu/ml x h). Although the combination of vancomycin with ceftriaxone was significantly more active than ceftriaxone alone (-0.55+/-0.19 deltalog10 cfu/ml x h), only an insignificant gain was observed by the addition of vancomycin to meropenem (-0.55+/-0.28 deltalog10 cfu/ml x h).
Resumo:
Cefepime, a broad-spectrum, fourth-generation cephalosporin, showed excellent CSF penetration with levels ranging between 10 and 16 mg/L after two intravenous injections (100 mg/kg). The bactericidal activity of cefepime (-0.60 +/- 0.28 Deltalog(10) cfu/mL/h) was superior to that of ceftriaxone (-0.34 +/- 0.23 Deltalog(10) cfu/mL/h, P < 0.05) and vancomycin (-0.39 +/- 0.19 Deltalog(10) cfu/mL/h, P < 0.05) in the treatment of rabbits with meningitis caused by an isolate highly resistant to penicillin (MIC of penicillin G: 4 mg/L). The addition of vancomycin to both cephalosporins did not significantly increase the killing rate compared with monotherapies (P > 0.05). Similar results were obtained in time-killing experiments in vitro.
Resumo:
Acute meningitis is a medical emergency, particularly in patients with rapidly progressing disease, mental status changes or neurological deficits. The majority of cases of bacterial meningitis are caused by a limited number of species, i.e. Streptococcus pneumoniae, Neisseria meningitis, Listeria monocytogenes, group B Streptococci (Streptococcus agalactiae), Haemophilus influenzae and Enterobacteriaceae. Many other pathogens can occasionally cause bacterial meningitis, often under special clinical circumstances. Treatment of meningitis includes two main goals: Eradication of the infecting organism, and management of CNS and systemic complications. Empiric therapy should be initiated without delay, as the prognosis of the disease depends on the time when therapy is started. One or two blood cultures should be obtained before administering the first antibiotic. Empiric therapy is primarily based on the age of the patient, with modifications if there are positive findings on CSF gram stain or if the patient presents with special risk factors. It is safer to choose regimens with broad coverage, as they can usually be modified within 24-48 hours, when antibiotic sensitivities of the infecting organism become available. Adjunctive therapy with dexamethasone is also administered in severely ill patients concomitantly with the first antibiotic dose. In patients who are clinically stable and are unlikely to be adversely affected if antibiotics are not administered immediately, including those with suspected viral or chronic meningitis, a lumbar puncture represents the first step, unless there is clinical suspicion of an intracerebral mass lesion. Findings in the CSF and on CT scan, if performed, will guide the further diagnostic work-up and therapy in all patients.
Resumo:
The antibacterial activities of amoxicillin-gentamicin, trovafloxacin, trimethoprim-sulfamethoxazole (TMP-SMX) and the combination of trovafloxacin with TMP-SMX were compared in a model of meningoencephalitis due to Listeria monocytogenes in infant rats. At 22 h after intracisternal infection, the cerebrospinal fluid was cultured to document meningitis, and the treatment was started. Treatment was instituted for 48 h, and efficacy was evaluated 24 h after administration of the last dose. All tested treatment regimens exhibited significant activities in brain, liver, and blood compared to infected rats receiving saline (P < 0.001). In the brain, amoxicillin plus gentamicin was more active than all of the other regimens, and trovafloxacin was more active than TMP-SMX (bacterial titers of 4.1 +/- 0.5 log10 CFU/ml for amoxicillin-gentamicin, 5.0 +/- 0.4 log10 CFU/ml for trovafloxacin, and 5.8 +/- 0.5 log10 CFU/ml for TMP-SMX; P < 0.05). In liver, amoxicillin-gentamicin and trovafloxacin were similarly active (2.8 +/- 0.8 and 2.7 +/- 0.8 log10 CFU/ml, respectively) but more active than TMP-SMX (4.4 +/- 0. 6 log10 CFU/ml; P < 0.05). The combination of trovafloxacin with TMP-SMX did not alter the antibacterial effect in the brain, but it did reduce the effect of trovafloxacin in the liver. Amoxicillin-gentamicin was the most active therapy in this study, but the activity of trovafloxacin suggests that further studies with this drug for the treatment of Listeria infections may be warranted.