173 resultados para MINIMALLY INVASIVE SURGERY
Resumo:
The transdisciplinary research project Virtopsy is dedicated to implementing modern imaging techniques into forensic medicine and pathology in order to augment current examination techniques or even to offer alternative methods. Our project relies on three pillars: three-dimensional (3D) surface scanning for the documentation of body surfaces, and both multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) to visualise the internal body. Three-dimensional surface scanning has delivered remarkable results in the past in the 3D documentation of patterned injuries and of objects of forensic interest as well as whole crime scenes. Imaging of the interior of corpses is performed using MSCT and/or MRI. MRI, in addition, is also well suited to the examination of surviving victims of assault, especially choking, and helps visualise internal injuries not seen at external examination of the victim. Apart from the accuracy and three-dimensionality that conventional documentations lack, these techniques allow for the re-examination of the corpse and the crime scene even decades later, after burial of the corpse and liberation of the crime scene. We believe that this virtual, non-invasive or minimally invasive approach will improve forensic medicine in the near future.
Resumo:
INTRODUCTION: Recent advances in medical imaging have brought post-mortem minimally invasive computed tomography (CT) guided percutaneous biopsy to public attention. AIMS: The goal of the following study was to facilitate and automate post-mortem biopsy, to suppress radiation exposure to the investigator, as may occur when tissue sampling under computer tomographic guidance, and to minimize the number of needle insertion attempts for each target for a single puncture. METHODS AND MATERIALS: Clinically approved and post-mortem tested ACN-III biopsy core needles (14 gauge x 160 mm) with an automatic pistol device (Bard Magnum, Medical Device Technologies, Denmark) were used for probe sampling. The needles were navigated in gelatine/peas phantom, ex vivo porcine model and subsequently in two human bodies using a navigation system (MEM centre/ISTB Medical Application Framework, Marvin, Bern, Switzerland) with guidance frame and a CT (Emotion 6, Siemens, Germany). RESULTS: Biopsy of all peas could be performed within a single attempt. The average distance between the inserted needle tip and the pea centre was 1.4mm (n=10; SD 0.065 mm; range 0-2.3 mm). The targets in the porcine liver were also accurately punctured. The average of the distance between the needle tip and the target was 0.5 mm (range 0-1 mm). Biopsies of brain, heart, lung, liver, pancreas, spleen, and kidney were performed on human corpses. For each target the biopsy needle was only inserted once. The examination of one body with sampling of tissue probes at the above-mentioned locations took approximately 45 min. CONCLUSIONS: Post-mortem navigated biopsy can reliably provide tissue samples from different body locations. Since the continuous update of positional data of the body and the biopsy needle is performed using optical tracking, no control CT images verifying the positional data are necessary and no radiation exposure to the investigator need be taken into account. Furthermore, the number of needle insertions for each target can be minimized to a single one with the ex vivo proven adequate accuracy and, in contrast to conventional CT guided biopsy, the insertion angle may be oblique. Navigation for minimally invasive tissue sampling is a useful addition to post-mortem CT guided biopsy.
Resumo:
OBJECTIVE: The objective of our study was to establish a standardized procedure for postmortem whole-body CT-based angiography with lipophilic and hydrophilic contrast media solutions and to compare the results of these two methods. MATERIALS AND METHODS: Minimally invasive postmortem CT angiography was performed on 10 human cadavers via access to the femoral blood vessels. Separate perfusion of the arterial and venous systems was established with a modified heart-lung machine using a mixture of an oily contrast medium and paraffin (five cases) and a mixture of a water-soluble contrast medium with polyethylene glycol (PEG) 200 in the other five cases. Imaging was executed with an MDCT scanner. RESULTS: The minimally invasive femoral approach to the vascular system provided a good depiction of lesions of the complete vascular system down to the level of the small supplying vessels. Because of the enhancement of well-vascularized tissues, angiography with the PEG-mixed contrast medium allowed the detection of tissue lesions and the depiction of vascular abnormalities such as pulmonary embolisms or ruptures of the vessel wall. CONCLUSION: The angiographic method with a water-soluble contrast medium and PEG as a contrast-agent dissolver showed a clearly superior quality due to the lack of extravasation through the gastrointestinal vascular bed and the enhancement of soft tissues (cerebral cortex, myocardium, and parenchymal abdominal organs). The diagnostic possibilities of these findings in cases of antemortem ischemia of these tissues are not yet fully understood.
Resumo:
OBJECTIVE: The purpose of this study was to adapt and improve a minimally invasive two-step postmortem angiographic technique for use on human cadavers. Detailed mapping of the entire vascular system is almost impossible with conventional autopsy tools. The technique described should be valuable in the diagnosis of vascular abnormalities. MATERIALS AND METHODS: Postmortem perfusion with an oily liquid is established with a circulation machine. An oily contrast agent is introduced as a bolus injection, and radiographic imaging is performed. In this pilot study, the upper or lower extremities of four human cadavers were perfused. In two cases, the vascular system of a lower extremity was visualized with anterograde perfusion of the arteries. In the other two cases, in which the suspected cause of death was drug intoxication, the veins of an upper extremity were visualized with retrograde perfusion of the venous system. RESULTS: In each case, the vascular system was visualized up to the level of the small supplying and draining vessels. In three of the four cases, vascular abnormalities were found. In one instance, a venous injection mark engendered by the self-administration of drugs was rendered visible by exudation of the contrast agent. In the other two cases, occlusion of the arteries and veins was apparent. CONCLUSION: The method described is readily applicable to human cadavers. After establishment of postmortem perfusion with paraffin oil and injection of the oily contrast agent, the vascular system can be investigated in detail and vascular abnormalities rendered visible.
Resumo:
PURPOSE OF REVIEW: Vertebroplasty, kyphoplasty and lordoplasty are minimally invasive procedures mainly performed for refractory pain due to osteoporotic vertebral body fractures. This review summarizes recent findings on outcome, complications and their impact on anesthetic management. RECENT FINDINGS: Despite an increasing number of publications on surgical technique, therapeutic efficacy and side effects of these interventions, anesthetic management per se is hardly investigated. All three treatments provide similar pain relief. Adverse effects include local cement leakage and new fractures adjacent to augmented vertebrae. Asymptomatic pulmonary cement embolism occurs in 4.6-6.8% of patients depending on cement viscosity, injection pressure and number of injected vertebrae. Potentially life-threatening embolism of cement or fat may occur. Kyphoplasty and lordoplasty aim at correcting vertebral deformity and are equally effective; lordoplasty is substantially less expensive, however. The incidence of systemic cement or fat embolism is similar to that in vertebroplasty. Whereas vertebroplasty is mostly performed under local anesthesia and sedation, general anesthesia is required for kyphoplasty and lordoplasty. The anesthetic regimen follows the principles of anesthesia in the elderly population. SUMMARY: Vertebroplasty, kyphoplasty and lordoplasty are effective minimally invasive treatments for stable vertebral compression fractures without compression of the spinal canal. The anesthesiologist must be prepared to manage systemic cement or fat embolism.
Resumo:
A complicated case of iatrogenic ureterovaginal fistula in a 56-year-old woman after laparoscopic-assisted vaginal hysterectomy, which persisted after several attempts of repair including ureterocystoneostomy, is presented. Accurate radiologic work-up enabled us to identify a refluxing ureteral stump, which was not ligated at the time of ureterocystoneostomy, as the origin of urinary leakage. Surgical principles that should be adhered to when managing such complex cases to obtain successful long-lasting outcome are described.
Resumo:
Despite the growing recognition of the patent foramen ovale (PFO), particularly when associated with an atrial septal aneurysm, as risk factor for several disease manifestations (above all paradoxical embolism), the optimal treatment strategy for symptomatic patients remains controversial. Percutaneous PFO closure is a minimally invasive procedure which can be performed with high success and low morbidity. For secondary prevention of recurrent embolic events, it appears to be clinically at least as effective as oral anticoagulation. Ventricular septal defects (VSDs) are the most common congenital heart defects. Percutaneous VSD closure is more intricate than PFO closure. It is associated with a significant risk of both peri-interventional and mid-term complications. In suitable patients with congenital VSD, device closure may well be the preferred treatment both for muscular or perimembranous VSDs and for residual defects after surgical VSD closure. The risk of complete atrioventricular conduction block remains a concern in the perimembranous group. The history, technique and clinical role of percutaneous PFO and VSD closure are discussed, with emphasis on current problems and future developments.
Resumo:
Abstract Radiation metabolomics employing mass spectral technologies represents a plausible means of high-throughput minimally invasive radiation biodosimetry. A simplified metabolomics protocol is described that employs ubiquitous gas chromatography-mass spectrometry and open source software including random forests machine learning algorithm to uncover latent biomarkers of 3 Gy gamma radiation in rats. Urine was collected from six male Wistar rats and six sham-irradiated controls for 7 days, 4 prior to irradiation and 3 after irradiation. Water and food consumption, urine volume, body weight, and sodium, potassium, calcium, chloride, phosphate and urea excretion showed major effects from exposure to gamma radiation. The metabolomics protocol uncovered several urinary metabolites that were significantly up-regulated (glyoxylate, threonate, thymine, uracil, p-cresol) and down-regulated (citrate, 2-oxoglutarate, adipate, pimelate, suberate, azelaate) as a result of radiation exposure. Thymine and uracil were shown to derive largely from thymidine and 2'-deoxyuridine, which are known radiation biomarkers in the mouse. The radiation metabolomic phenotype in rats appeared to derive from oxidative stress and effects on kidney function. Gas chromatography-mass spectrometry is a promising platform on which to develop the field of radiation metabolomics further and to assist in the design of instrumentation for use in detecting biological consequences of environmental radiation release.
Resumo:
STUDY OBJECTIVE: To show the relationship between the neuropeptide-Y pelvic sympathetic nerves and neoangiogenesis in the development of endometriosis DESIGN: Prospective study. SETTING: Academic community teaching hospital. PATIENTS: Fifteen consecutive women with unilateral endometriotic infiltration of the sacrouterine ligaments. INTERVENTIONS: A laparoscopic excision/biopsy of involved and noninvolved parts of the sacrouterine ligaments were taken. The sections were incubated with the neuronal marker rabbit polyclonal anti-protein gene product 9.5 and rabbit polyclonal anti-neuropeptide-Y. We made a comparative study on the distribution of nerve fibers and their relationship to the vessels on intact and endometriotic involved tissue. MEASUREMENTS AND MAIN RESULTS: The results show that a large amount of nerves are present around the blood vessels in the endometriosis samples, and a large number of these nerves are neuropeptide-Y sympathetic nerves. Adrenergic fibers are also present in the intact control subjects, however, in significantly smaller amounts. CONCLUSION: This finding shows a strong relationship between the neuropeptide-Y sympathetic pelvic nerves and the neoangiogenesis required for the development of endometriosis.
Resumo:
Endovascular aneurysm repair has matured significantly over the last 20 years and is becoming increasingly popular as a minimally invasive treatment option for patients with abdominal aortic aneurysms (AAA). Long-term durability of this fascinating treatment, however, is in doubt as continuing aneurysmal degeneration of the aortoiliac graft attachment zones is clearly associated with late adverse sequelae. In recent years, our growing understanding of the physiopathology of AAA formation has facilitated scrutiny of various potential drug treatment concepts. In this article we review the mechanical and biological challenges associated with endovascular treatment of infrarenal AAAs and discuss potential approaches to ongoing aneurysmal degeneration, which hampers long-term outcomes of this minimally invasive therapy.
Resumo:
PURPOSE: To report the application of a true lumen re-entry device in the bailout treatment of chronic total occlusions (CTO) of the superficial femoral artery (SFA) after failed angioplasty. METHODS: Nineteen patients (12 men; mean age 81 years, range 61-97) with 20 SFA CTOs and Rutherford category 2 to 5 ischemia were prospectively evaluated. All CTOs had unsuccessful recanalization using conventional techniques and were subsequently treated with the Outback LTD catheter. Follow-up at 3, 6, and 12 months included ankle/toe pressure measurement and pulse volume recordings. Endpoints were revascularization rate, target lesion revascularization, and limb salvage. RESULTS: Revascularization was achieved in 95% of the cases. There were 2 (10%) periprocedural complications unrelated to the re-entry device, which were resolved by endovascular or surgical treatment. The target lesion revascularization rate was 10%, with the 2 events occurring at 3 and 6 months, respectively, in patients with Rutherford category 4-5 ischemia. There was one below-the-knee amputation in the patient with failed revascularization. CONCLUSION: The acute failure of endovascular treatment of SFA CTOs is most often due to an inability to re-enter the true lumen after the occlusion is crossed in a subintimal plane. Bailout revascularization with the Outback LTD catheter is highly successful and shows a low device-related complication rate. This needle- and fluoroscopic-based re-entry device increases the endovascular success rate and is therefore expanding the minimally invasive treatment options for surgically unfit patients.
Resumo:
OBJECTIVE: The standard technique of two-dimensional intra-arterial digital subtraction angiography (2D-DSA) for the imaging of experimental rabbit aneurysms is invasive and has considerable surgical risks. Therefore, minimally invasive techniques ideally providing three-dimensional imaging for intervention planning and follow-up are needed. This study evaluates the feasibility and quality of three-dimensional 3-T magnetic resonance angiography (3D-3T-MRA) and compares 3D-3T-MRA with 2D-DSA in experimental aneurysms in the rabbit. METHOD: Three microsurgically created aneurysms in three rabbits were evaluated using 2D-DSA and 3D-3T-MRA. Imaging of the aneurysms was performed 2 weeks after creation using 2D-DSA and contrast-enhanced (CE) MRA. Measurements included aneurysm dome (length and width) and aneurysm neck. Aneurysm volumes were determined using CE-MRA. RESULTS: The measurements of the aneurysms' dimensions and the evaluation of vicinity vessels with both techniques showed a good correlation. The mean aneurysm length, aneurysm width and neck width measured with DSA (6.9, 4.1 and 2.8 mm, respectively) correlated with the measurements performed in 3D-3T-MRA (6.9, 4 and 2.5 mm, respectively). The mean aneurysm volumes measured with CE-MRA was 46.7 mm(3). CONCLUSION: 3D-3T CE-MRA is feasible and less invasive and is a safer imaging alternative to DSA for experimental aneurysm. Additionally, aneurysm technique this precise offers the possibility of repetitive 3D aneurysm volumetry for long-term follow-up studies after endovascular aneurysm occlusion.
Resumo:
INTRODUCTION Intraoperative radiofrequency (RF) ablation is an effective treatment of atrial fibrillation (AF). However, secondary arrhythmias late after ablation may complicate the patient's course. We report on the incidence, mechanisms, and treatment of gap-related atrial flutter and other secondary arrhythmias during long-term follow-up. METHODS AND RESULTS In 129 patients who underwent intraoperative RF ablation with placement of left atrial linear lesions using minimally invasive surgical techniques, secondary arrhythmias were analyzed during long-term follow-up (20 +/- 6 months). Transient atrial arrhythmias during the first 3 postoperative months were excluded. In 8 (6.2%) of 129 patients, sustained stable secondary arrhythmias were documented. Left atrial, gap-related atrial flutter was observed in 4 patients (3.1%). The flutter was treated by percutaneous RF ablation in 3 patients (2.3%) and with drugs in 1 patient (0.8%). In 2 patients (1.6%), right atrial isthmus-dependent atrial flutter occurred and was treated successfully by percutaneous RF ablation. In 2 patients (1.6%), ectopic right atrial tachycardias occurred and were treated with percutaneous RF ablation. CONCLUSION Late after intraoperative RF ablation of atrial fibrillation, three types of stable secondary arrhythmias were observed in 6% of patients: left atrial gap-related atrial flutter, right atrial isthmus-dependent atrial flutter, and ectopic atrial tachycardia. Gaps after intraoperative RF ablation due to noncontinuous or nontransmural linear lesions may lead to stable left atrial macroreentrant tachycardias, requiring new interventional therapy.
Resumo:
HYPOTHESIS A previously developed image-guided robot system can safely drill a tunnel from the lateral mastoid surface, through the facial recess, to the middle ear, as a viable alternative to conventional mastoidectomy for cochlear electrode insertion. BACKGROUND Direct cochlear access (DCA) provides a minimally invasive tunnel from the lateral surface of the mastoid through the facial recess to the middle ear for cochlear electrode insertion. A safe and effective tunnel drilled through the narrow facial recess requires a highly accurate image-guided surgical system. Previous attempts have relied on patient-specific templates and robotic systems to guide drilling tools. In this study, we report on improvements made to an image-guided surgical robot system developed specifically for this purpose and the resulting accuracy achieved in vitro. MATERIALS AND METHODS The proposed image-guided robotic DCA procedure was carried out bilaterally on 4 whole head cadaver specimens. Specimens were implanted with titanium fiducial markers and imaged with cone-beam CT. A preoperative plan was created using a custom software package wherein relevant anatomical structures of the facial recess were segmented, and a drill trajectory targeting the round window was defined. Patient-to-image registration was performed with the custom robot system to reference the preoperative plan, and the DCA tunnel was drilled in 3 stages with progressively longer drill bits. The position of the drilled tunnel was defined as a line fitted to a point cloud of the segmented tunnel using principle component analysis (PCA function in MatLab). The accuracy of the DCA was then assessed by coregistering preoperative and postoperative image data and measuring the deviation of the drilled tunnel from the plan. The final step of electrode insertion was also performed through the DCA tunnel after manual removal of the promontory through the external auditory canal. RESULTS Drilling error was defined as the lateral deviation of the tool in the plane perpendicular to the drill axis (excluding depth error). Errors of 0.08 ± 0.05 mm and 0.15 ± 0.08 mm were measured on the lateral mastoid surface and at the target on the round window, respectively (n =8). Full electrode insertion was possible for 7 cases. In 1 case, the electrode was partially inserted with 1 contact pair external to the cochlea. CONCLUSION The purpose-built robot system was able to perform a safe and reliable DCA for cochlear implantation. The workflow implemented in this study mimics the envisioned clinical procedure showing the feasibility of future clinical implementation.
Resumo:
The application of image-guided systems with or without support by surgical robots relies on the accuracy of the navigation process, including patient-to-image registration. The surgeon must carry out the procedure based on the information provided by the navigation system, usually without being able to verify its correctness beyond visual inspection. Misleading surrogate parameters such as the fiducial registration error are often used to describe the success of the registration process, while a lack of methods describing the effects of navigation errors, such as those caused by tracking or calibration, may prevent the application of image guidance in certain accuracy-critical interventions. During minimally invasive mastoidectomy for cochlear implantation, a direct tunnel is drilled from the outside of the mastoid to a target on the cochlea based on registration using landmarks solely on the surface of the skull. Using this methodology, it is impossible to detect if the drill is advancing in the correct direction and that injury of the facial nerve will be avoided. To overcome this problem, a tool localization method based on drilling process information is proposed. The algorithm estimates the pose of a robot-guided surgical tool during a drilling task based on the correlation of the observed axial drilling force and the heterogeneous bone density in the mastoid extracted from 3-D image data. We present here one possible implementation of this method tested on ten tunnels drilled into three human cadaver specimens where an average tool localization accuracy of 0.29 mm was observed.