154 resultados para LEAK DETECTORS
Resumo:
The following, from the 12th OESO World Conference: Cancers of the Esophagus, includes commentaries on the role of the nurse in preparation of esophageal resection (ER); the management of patients who develop high-grade dysplasia after having undergone Nissen fundoplication; the trajectory of care for the patient with esophageal cancer; the influence of the site of tumor in the choice of treatment; the best location for esophagogastrostomy; management of chylous leak after esophagectomy; the optimal approach to manage thoracic esophageal leak after esophagectomy; the choice for operational approach in surgery of cardioesophageal crossing; the advantages of robot esophagectomy; the place of open esophagectomy; the advantages of esophagectomy compared to definitive chemoradiotherapy; the pathologist report in the resected specimen; the best way to manage patients with unsuspected positive microscopic margin after ER; enhanced recovery after surgery for ER: expedited care protocols; and long-term quality of life in patients following esophagectomy.
Resumo:
Transport of radioactive iodide 131I− in a structured clay loam soil under maize in a final growing phase was monitored during five consecutive irrigation experiments under ponding. Each time, 27 mm of water were applied. The water of the second experiment was spiked with 200 MBq of 131I− tracer. Its activity was monitored as functions of depth and time with Geiger-Müller (G-M) detectors in 11 vertically installed access tubes. The aim of the study was to widen our current knowledge of water and solute transport in unsaturated soil under different agriculturally cultivated settings. It was supposed that the change in 131I− activity (or counting rate) is proportional to the change in soil water content. Rapid increase followed by a gradual decrease in 131I− activity occurred at all depths and was attributed to preferential flow. The iodide transport through structured soil profile was simulated by the HYDRUS 1D model. The model predicted relatively deep percolation of iodide within a short time, in a good agreement with the observed vertical iodide distribution in soil. We found that the top 30 cm of the soil profile is the most vulnerable layer in terms of water and solute movement, which is the same depth where the root structure of maize can extend.
Resumo:
BACKGROUND The Perceval (Sorin Group, Milan, Italy) is a self-anchoring sutureless aortic valve prosthesis. We report the short- to midterm results of combined aortic valve replacement (AVR) with concomitant procedures in elderly patients undergoing operation as part of 3 consecutive prospective multicenter European studies. METHODS From April 2007 to February 2013, 243 patients (mean age, 79.7 ± 5.1 years; female patients, 61%; median EuroSCORE, 9%) underwent AVR with concomitant procedures. The concomitant procedures were coronary artery bypass grafting (CABG) (182 cases), septal myectomy (21 cases), CABG + other procedures (18 cases), and 22 other procedures. Primary and secondary end points included implant feasibility and safety (for mortality and morbidity) and efficacy (New York Heart Association [NYHA] class improvement and hemodynamic results) of the prosthesis at the different follow-up periods. Data were expressed as mean ± standard deviation. Kaplan-Meier analysis was performed for survival analysis. RESULTS Mean aortic cross-clamp and extracorporeal circulation (ECC) times were 50.7 ± 22.8 minutes and 78.9 ± 32.3 minutes, respectively. Thirty-day mortality was 2.1%. Mean postoperative gradient and effective orifice area were 10.1 ± 4.7 mm Hg and 1.5 ± 0.4 cm(2) and 8.9 ± 5.6 mm Hg and 1.6 ± 0.4 cm(2), respectively, at 1 year. There were early explantations, 4 of which resulted from paravalvular leaks. One additional valve explantation resulted from aortic root bleeding, probably caused by excessively extensive decalcification. In the late period, there was 1 mild paravalvular leak and no intravalvular insufficiency. No migration, dislodgement, or degeneration of the valve occurred during follow-up. Median follow-up was 444 days. CONCLUSIONS These trials confirm the safety and efficacy of the Perceval sutureless aortic valve, especially in elderly patients requiring AVR + concomitant procedures. In this patient group, sutureless valves may be advantageous compared to transcatheter valve implantations as concomitant procedures other than percutaneous coronary artery angioplasty are not always possible in the latter.
Resumo:
The aim of this study was to improve cage systems for maintaining adult honey bee (Apis mellifera L.) workers under in vitro laboratory conditions. To achieve this goal, we experimentally evaluated the impact of different cages, developed by scientists of the international research network COLOSS (Prevention of honey bee COlony LOSSes), on the physiology and survival of honey bees. We identified three cages that promoted good survival of honey bees. The bees from cages that exhibited greater survival had relatively lower titers of deformed wing virus, suggesting that deformed wing virus is a significant marker reflecting stress level and health status of the host. We also determined that a leak- and drip-proof feeder was an integral part of a cage system and a feeder modified from a 20-ml plastic syringe displayed the best result in providing steady food supply to bees. Finally, we also demonstrated that the addition of protein to the bees' diet could significantly increase the level ofvitellogenin gene expression and improve bees' survival. This international collaborative study represents a critical step toward improvement of cage designs and feeding regimes for honey bee laboratory experiments.
Resumo:
OBJECTIVE The aim of the present study was to evaluate a dose reduction in contrast-enhanced chest computed tomography (CT) by comparing the three latest generations of Siemens CT scanners used in clinical practice. We analyzed the amount of radiation used with filtered back projection (FBP) and an iterative reconstruction (IR) algorithm to yield the same image quality. Furthermore, the influence on the radiation dose of the most recent integrated circuit detector (ICD; Stellar detector, Siemens Healthcare, Erlangen, Germany) was investigated. MATERIALS AND METHODS 136 Patients were included. Scan parameters were set to a thorax routine: SOMATOM Sensation 64 (FBP), SOMATOM Definition Flash (IR), and SOMATOM Definition Edge (ICD and IR). Tube current was set constantly to the reference level of 100 mA automated tube current modulation using reference milliamperes. Care kV was used on the Flash and Edge scanner, while tube potential was individually selected between 100 and 140 kVp by the medical technologists at the SOMATOM Sensation. Quality assessment was performed on soft-tissue kernel reconstruction. Dose was represented by the dose length product. RESULTS Dose-length product (DLP) with FBP for the average chest CT was 308 mGy*cm ± 99.6. In contrast, the DLP for the chest CT with IR algorithm was 196.8 mGy*cm ± 68.8 (P = 0.0001). Further decline in dose can be noted with IR and the ICD: DLP: 166.4 mGy*cm ± 54.5 (P = 0.033). The dose reduction compared to FBP was 36.1% with IR and 45.6% with IR/ICD. Signal-to-noise ratio (SNR) was favorable in the aorta, bone, and soft tissue for IR/ICD in combination compared to FBP (the P values ranged from 0.003 to 0.048). Overall contrast-to-noise ratio (CNR) improved with declining DLP. CONCLUSION The most recent technical developments, namely IR in combination with integrated circuit detectors, can significantly lower radiation dose in chest CT examinations.
Resumo:
We analyze the data on hydrogen energetic neutral atoms (ENAs) emissions from the dayside of Mars, recorded by a Neutral Particle Detector of the Analyzer of Space Plasmas and Energetic Atoms aboard Mars Express from 14 March to 9 July 2004. We first identify and analyze events of the ENA flux enhancement coinciding with the presence of the crustal magnetic anomalies on the dayside of Mars. We then backtrace the ENA emissions to the lower altitudes (source region) and build up an average map of the flux intensities in the geographic coordinates with all the available data. The map shows a peak-to-valley ENA flux enhancement of 40%–90% close to the crustal magnetic anomaly regions. These results suggest the influence of the magnetic anomalies on the ENA emission from the dayside of Mars. The enhancement may result from the deviation of the highly directional plasma flow above anomalies toward the detectors such that more charge exchange ENAs would be recorded. Alternatively, higher exospheric densities above the anomalies would also result in an increase of the charge exchange ENA flux.
Resumo:
Antihydrogen holds the promise to test, for the first time, the universality of freefall with a system composed entirely of antiparticles. The AEgIS experiment at CERN’s antiproton decelerator aims to measure the gravitational interaction between matter and antimatter by measuring the deflection of a beam of antihydrogen in the Earths gravitational field (g). The principle of the experiment is as follows: cold antihydrogen atoms are synthesized in a Penning-Malberg trap and are Stark accelerated towards a moir´e deflectometer, the classical counterpart of an atom interferometer, and annihilate on a position sensitive detector. Crucial to the success of the experiment is the spatial precision of the position sensitive detector.We propose a novel free-fall detector based on a hybrid of two technologies: emulsion detectors, which have an intrinsic spatial resolution of 50 nm but no temporal information, and a silicon strip / scintillating fiber tracker to provide timing and positional information. In 2012 we tested emulsion films in vacuum with antiprotons from CERN’s antiproton decelerator. The annihilation vertices could be observed directly on the emulsion surface using the microscope facility available at the University of Bern. The annihilation vertices were successfully reconstructed with a resolution of 1–2 μmon the impact parameter. If such a precision can be realized in the final detector, Monte Carlo simulations suggest of order 500 antihydrogen annihilations will be sufficient to determine gwith a 1 % accuracy. This paper presents current research towards the development of this technology for use in the AEgIS apparatus and prospects for the realization of the final detector.
Resumo:
Several models of physics beyond the Standard Model predict neutral particles that decay into final states consisting of collimated jets of light leptons and hadrons (socalled “lepton jets”). These particles can also be long-lived with decay length comparable to, or even larger than, the LHC detectors’ linear dimensions. This paper presents the results of a search for lepton jets in proton-proton collisions at the centre-of-mass energy of √s = 8TeV in a sample of 20.3 fb−1 collected during 2012 with the ATLAS detector at the LHC. Limits on models predicting Higgs boson decays to neutral long-lived lepton jets are derived as a function of the particle’s proper decay length.
Resumo:
The integrated elliptic flow of charged particles produced in Pb+Pb collisions at √sNN = 2.76 TeV has been measured with the ATLAS detector using data collected at the Large Hadron Collider. The anisotropy parameter, v2, was measured in the pseudorapidity range |η| ≤ 2.5 with the event-plane method. In order to include tracks with very low transverse momentum pT, thus reducing the uncertainty in v2 integrated over pT, a 1 μb−1 data sample recorded without a magnetic field in the tracking detectors is used. The centrality dependence of the integrated v2 is compared to other measurements obtained with higher pT thresholds. The integrated elliptic flow is weakly decreasing with |η|. The integrated v2 transformed to the rest frame of one of the colliding nuclei is compared to the lower-energy RHIC data.
Resumo:
A number of liquid argon time projection chambers (LAr TPCs) are being built or are proposed for neutrino experiments on long- and short baseline beams. For these detectors, a distortion in the drift field due to geometrical or physics reasons can affect the reconstruction of the events. Depending on the TPC geometry and electric drift field intensity, this distortion could be of the same magnitude as the drift field itself. Recently, we presented a method to calibrate the drift field and correct for these possible distortions. While straight cosmic ray muon tracks could be used for calibration, multiple coulomb scattering and momentum uncertainties allow only a limited resolution. A UV laser instead can create straight ionization tracks in liquid argon, and allows one to map the drift field along different paths in the TPC inner volume. Here we present a UV laser feed-through design with a steerable UV mirror immersed in liquid argon that can point the laser beam at many locations through the TPC. The straight ionization paths are sensitive to drift field distortions, a fit of these distortion to the linear optical path allows to extract the drift field, by using these laser tracks along the whole TPC volume one can obtain a 3D drift field map. The UV laser feed-through assembly is a prototype of the system that will be used for the MicroBooNE experiment at the Fermi National Accelerator Laboratory (FNAL).
Resumo:
In this paper we present results on measurements of the dielectric strength of liquid argon near its boiling point and cathode-anode distances in the range of 0.1 mm to 40 mm with spherical cathode and plane anode. We show that at such distances the applied electric field at which breakdowns occur is as low as 40 kV/cm. Flash-overs across the ribbed dielectric of the high voltage feed-through are observed for a length of 300 mm starting from a voltage of 55 kV. These results contribute to set reference for the breakdown-free design of ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC).
Resumo:
NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration. This paper describes the state of the NA61/SHINE facility — the beams and the detector system — before the CERN Long Shutdown I, which started in March 2013.
Resumo:
BACKGROUND Paediatric supraglottic airway devices AmbuAura-i and Air-Q were designed as conduits for tracheal intubation. Although fibreoptic-guided intubation has proved successful, blind intubation as a rescue technique has never been evaluated. OBJECTIVE Evaluation of blind intubation through AmbuAura-i and Air-Q. On the basis of fibreoptic view data, we hypothesised that the success rate with the AmbuAura-i would be higher than with the Air-Q. DESIGN A prospective, randomised controlled trial with institutional review board (IRB) approval and written informed consent. SETTING University Childrens' Hospital; September 2012 to July 2014. PATIENTS Eighty children, American Society of Anesthesiologists (ASA) class I to III, weight 5 to 50 kg. INTERVENTIONS Tracheal intubation was performed through the randomised device with the tip of a fibrescope placed inside and proximal to the tip of the tracheal tube. This permitted sight of tube advancement, but without fibreoptic guidance (visualised blind intubation). MAIN OUTCOME MEASURES Primary outcome was successfully visualised blind intubation; secondary outcomes included supraglottic airway device success, insertion times, airway leak pressure, fibreoptic view and adverse events. RESULTS Personal data did not differ between groups. In contrast to our hypothesis, blind intubation was possible in 15% with the Air-Q and in 3% with the AmbuAura-i [95% confidence interval (95% CI) 6 to 31 vs. 0 to 13%; P = 0.057]. First attempt supraglottic airway device insertion success rates were 95% (Air-Q) and 100% (AmbuAura-i; 95% CI 83 to 99 vs. 91 to 100; P = 0.49). Median leak pressures were 18 cmH2O (Air-Q) and 17 cmH2O [AmbuAura-i; interquartile range (IQR) 14 to 18 vs. 14 to 19 cmH2O; P = 0.66]. Air-Q insertion was slower (27 vs. 19 s, P < 0.001). There was no difference in fibreoptic view, or adverse events (P > 0.05). In one child (Air-Q size 1.5, tube size 3.5), the tube dislocated during device removal. CONCLUSION Ventilation with both devices is reliable, but success of blind intubation is unacceptably low and cannot be recommended for elective or rescue purposes. If intubation through a paediatric supraglottic airway device is desired, we suggest that fibreoptic guidance is used. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT01692522.
Resumo:
Objective: Minimizing resection and preserving leaflet tissue has been previously shown to be beneficial for mitral valve function and leaflet kinematics after repair of acute posterior leaflet prolapse in porcine valves. We examined the effects of different additional methods of mitral valve repair (neochordoplasty, ring annuloplasty, edge-to-edge repair and triangular resection) on hemodynamics at different heart rates in an experimental model. Methods: Severe acute P2 prolapse was created in eight porcine mitral valves by resecting the posterior marginal chordae. Valve hemodynamics was quantified under pulsatile conditions in an in vitro heart simulator before and after surgical manipulation. Mitral regurgitation was corrected using four different methods of repair on the same valve: neochordoplasty with expanded polytetrafluoroethylene sutures alone and together with ring annuloplasty, edge-to-edge repair and triangular resection, both with non-restrictive annuloplasty. Residual mitral valve leak, trans-valvular pressure gradients, flow and cardiac output were measured at 60 and 80 beats/min. A validated statistical linear mixed model was used to analyze the effect of treatment. The p values were calculated using a two-sided Wald test. Results: Only neochordoplasty with expanded polytetrafluoroethylene sutures but without ring annuloplasty achieved similar hemodynamics compared to those of the native mitral valve (p range 0.071-0.901). Trans-valvular diastolic pressure gradients were within a physiologic range but significantly higher than those of the native valve following neochordoplasty with ring annuloplasty (p=0.000), triangular resection (p=0.000) and edge-to-edge repair (p=0.000). Neochordoplasty alone was significantly better in terms of hemodynamic than neochordoplasty with a ring annuloplasty (p=0.000). These values were stable regardless of heart rate or ring size. Conclusions: Neochordoplasty without ring annuloplasty is the only repair technique able to achieve almost native physiological hemodynamics after correction of leaflet prolapse in a porcine experimental model of acute chordal rupture.
Resumo:
Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at 0T > 16 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors.