148 resultados para IMMUNE-RESPONSES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: Altered microbiota composition, changes in immune responses and impaired intestinal barrier functions are observed in IBD. Most of these features are controlled by proteases and their inhibitors to maintain gut homeostasis. Unrestrained or excessive proteolysis can lead to pathological gastrointestinal conditions. The aim was to validate the identified protease IBD candidates from a previously performed systematic review through a genetic association study and functional follow-up. DESIGN: We performed a genetic association study in a large multicentre cohort of patients with Crohn's disease (CD) and UC from five European IBD referral centres in a total of 2320 CD patients, 2112 UC patients and 1796 healthy controls. Subsequently, we did an extensive functional assessment of the candidate genes to explore their causality in IBD pathogenesis. RESULTS: Ten single nucleotide polymorphisms (SNPs) in four genes were significantly associated with CD: CYLD, USP40, APEH and USP3. CYLD was the most significant gene with the intronically located rs12324931 the strongest associated SNP (pFDR=1.74e-17, OR=2.24 (1.83 to 2.74)). Five SNPs in four genes were significantly associated with UC: USP40, APEH, DAG1 and USP3. CYLD, as well as some of the other associated genes, is part of the ubiquitin proteasome system (UPS). We therefore determined if the IBD-associated adherent-invasive Escherichia coli (AIEC) can modulate the UPS functioning. Infection of intestinal epithelial cells with the AIEC LF82 reference strain modulated the UPS turnover by reducing poly-ubiquitin conjugate accumulation, increasing 26S proteasome activities and decreasing protein levels of the NF-κB regulator CYLD. This resulted in IκB-α degradation and NF-κB activation. This activity was very important for the pathogenicity of AIEC since decreased CYLD resulted in increased ability of AIEC LF82 to replicate intracellularly. CONCLUSIONS: Our results reveal the UPS, and CYLD specifically, as an important contributor to IBD pathogenesis, which is favoured by both genetic and microbial factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

X-linked inhibitor of apoptosis protein (XIAP) has been identified as a potent regulator of innate immune responses, and loss-of-function mutations in XIAP cause the development of the X-linked lymphoproliferative syndrome type 2 (XLP-2) in humans. Using gene-targeted mice, we show that loss of XIAP or deletion of its RING domain lead to excessive cell death and IL-1β secretion from dendritic cells triggered by diverse Toll-like receptor stimuli. Aberrant IL-1β secretion is TNF dependent and requires RIP3 but is independent of cIAP1/cIAP2. The observed cell death also requires TNF and RIP3 but proceeds independently of caspase-1/caspase-11 or caspase-8 function. Loss of XIAP results in aberrantly elevated ubiquitylation of RIP1 outside of TNFR complex I. Virally infected Xiap−/− mice present with symptoms reminiscent of XLP-2. Our data show that XIAP controls RIP3-dependent cell death and IL-1β secretion in response to TNF, which might contribute to hyperinflammation in patients with XLP-2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chapter 1 gives an overview about Streptococcus pneumoniae, its role as a human pathogen and its virulence factors. Additionally, biofilm development and its relevance in clinics are introduced, and the innate immune response to pneumococcus as well as bacterial-viral interactions in the upper respiratory tract are also discussed. Chapter 2 emphasizes the three main topics of this thesis: the role of capsule and pneumolysin in the immune response in the respiratory tract, biofilm formation of S. pneumoniae serotypes and commensal streptococci in vitro, and host innate immune responses to RSV and S. pneumoniae during in vitro co-infections. Aims and hypotheses are provided here. Chapter 3 is divided into two parts: First, the release of the pro-inflammatory cytokines CXCL8 and IL-6 from the human pharyngeal epithelial cell line Detroit 562 and from human bronchial epithelial cells (iHBEC) is described in response to S. pneumoniae. Capsule was shown to suppress the release of both cytokines in both cell lines tested, but release was much less from iHBEC cells. During intranasal colonization of mice, suppression of CXCL8 release by the capsule was also observed in vivo, but the effect was only measured in the absence of pneumolysin. Long term, stable nasopharyngeal carriage in a mouse model resulted in the dissemination of nonencapsulated pneumococci into the lungs, whereas encapsulated strains remained in the nasopharynx. The S. pneumoniae capsule thus plays a role in modulation of the pro-inflammatory immune response in the respiratory tract. Second, results on immunological cells and immune regulation in a long term, stable nasopharyngeal carriage mouse model are presented. Mice were infected with encapsulated or nonencapsulated pneumococcal strains, and after 1, 3, 8 and 15 days, were sacrificed to evaluate the numbers of CD45+ cells, neutrophils, macrophages, FoxP3+ regulatory T-cells and CD3+ T-cells in the nasal mucosa as well as the amount of secreted IL-10 in the nasopharynx. Nasopharyngeal colonization which is effectively silent resulted in the stimulation of FoxP3+ regulatory T-cells and IL-10 release associated with immune homeostasis, whereas lung infiltration was required to increase the number of neutrophils and macrophages resulting in a stronger innate immune response in the nasal mucosa. Chapter 4 contains results of mono- and co-stimulation using RSV and pneumococci or pneumococcal virulence factors on the human bronchial epithelial cell line BEAS-2B. An increase in CXCL8 and IL-6 levels was measured for mixed stimulations of RSV and pneumococcus when encapsulated bacteria were used. Increasing pneumolysin concentrations resulted in enhanced CXCL8 levels. Priming of bronchial epithelial cells with RSV opens the door for more severe pneumococcal infections. Chapter 5 is composed of two parts: The first part describes initial biofilm formation of serotypes 6B and 7F in a static model in vitro. Biofilms of both serotypes contained SCVs, but only serotype 6B increased in SCV formation between 16 and 65h of incubation. SCV stability was tested by passaging clones in complex medium, where SCV production is not associated with advantages in growth. Serotype 6B lost the SCV phenotype indicating a fast adaptation to a changing nutritional environment. Limitations of our in vitro model are discussed. The second part is about initial biofilm formation of mixed culture growth of S. pneumoniae with commensal streptococci. Competition dominates this process. S. oralis and pneumococcus compete for nutrients, whereas mixed species growth of S. mitis or S. pseudopneumoniae with S. pneumoniae is mainly influenced by other factors. In Chapter 6 the findings of chapters 3, 4 and 5 are discussed and an outlook for further studies is provided. Chapters 7, 8, 9, 10 and 11 contain the references, the acknowledgements, the curriculum vitae, the appendix and the declaration of originality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Currently, systemic immunosuppression is used in vascularized composite allotransplantation (VCA). This treatment has considerable side effects and reduces the quality of life of VCA recipients. We loaded the immunosuppressive drug tacrolimus into a self-assembled hydrogel, which releases the drug in response to proteolytic enzymes that are overexpressed during inflammation. A one-time local injection of the tacrolimus-laden hydrogel significantly prolonged graft survival in a Brown Norway-to-Lewis rat hindlimb transplantation model, leading to a median graft survival of >100 days compared to 33.5 days in tacrolimus only-treated recipients. Control groups with no treatment or hydrogel only showed a graft survival of 11 days. Histopathological evaluation, including anti-graft antibodies and complement C3, revealed significantly reduced immune responses in the tacrolimus-hydrogel group compared with tacrolimus only. In conclusion, a single-dose local injection of an enzyme-responsive tacrolimus-hydrogel is capable of preventing VCA rejection for >100 days in a rat model and may offer a new approach for immunosuppression in VCA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Synthetic agonists of TLR9 containing novel DNA structures and R'pG (wherein R=1-(2'-deoxy-beta-d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine) motifs, referred to as immune modulatory oligonucleotides (IMOs), have been shown to stimulate T(H)-1-type-immune responses and potently reverse allergen-induced T(H)-2 responses to T(H)-1 responses in vitro and in vivo in mice. In order to investigate the immunomodulatory potential of IMOs in dogs, canine peripheral blood mononuclear cells (PBMC) from healthy dogs were stimulated with three different IMOs and a control IMO, alone or in combination with concanavalin A (ConA). Lipopolysaccharide (LPS) was used as a positive control for B lymphocyte activation. Carboxyfluorescein diacetate succinimidyl ester and phenotype staining was used to tag proliferating T and B lymphocytes (CD5(+) and CD21(+)) by flow cytometry. Real-time PCR and ELISA were processed to assay cytokine production of IFN-gamma, IL-10, TGF-beta, IL-6 and IL-10. Like LPS, IMOs alone induced neither proliferation of CD5(+) T cells nor CD21(+) B cells, but both LPS and IMO had the capacity to co-stimulate ConA and induced proliferation of B cells. In combination with ConA, one of the IMOs (IMO1) also induced proliferation of T cells. IMO1 also significantly enhanced the expression of IFN-gamma on the mRNA and protein level in canine PBMC, whereas expression of IL-10, TGF-beta and IL-4 mRNAs was not induced by any of the IMOs. These results indicate that in canine PBMC from healthy dogs, IMO1 was able to induce a T(H)-1 immune response including T- and B-cell proliferation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Psoriasis is a chronic inflammatory skin disease and various stress factors mediate inflammation. Heat shock protein (HSP) 90 plays an important role in cell survival; cytokine signaling, such as interleukin-17 receptor signaling; and immune responses. OBJECTIVE We sought to elucidate protein expression and distribution of HSP90 in psoriasis. METHODS HSP90 expression and its cellular source were analyzed on normal-appearing, nonlesional, lesional, and ustekinumab-treated psoriatic skin using immunohistochemistry and double immunofluorescence. RESULTS HSP90α, the inducible isoform of HSP90, was significantly up-regulated in epidermal keratinocytes and mast cells of lesional skin and down-regulated after ustekinumab therapy. LIMITATIONS There was a limited sample size. CONCLUSIONS HSP90 from keratinocytes and mast cells is a key regulator of psoriatic inflammation and HSP90 inhibitors may represent a novel therapeutic approach to the disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Systemic therapy for atopic dermatitis (AD) is indicated in patients with severe disease refractory to adequate topical treatment. Currently available drugs aim to decrease inflammation by suppressing and/or modulating immune responses and thus may indirectly improve skin barrier function, resulting in a decrease in clinical signs and symptoms in particular pruritus. Before considering systemic treatment, patient adherence to topical treatment including skin care has to be ensured. The selection of the drug depends on the disease severity, localization, complications, concomitant diseases, and age of the patient, but also on their availability and costs as well as the doctor's experience. Bearing in mind the potential risk of resistance, systemic therapy with antibiotics should be exclusively considered in clinically manifest infections such as in children. Here, we review recently published clinical trials and case reports on systemic therapy of pediatric and adult patients with AD to draw conclusions for clinical practice. Although AD is a common disease, controlled clinical studies investigating the efficacy of systemic drugs are scarce, except for cyclosporine, which has been approved for the therapy of severe AD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pneumolysin (PLY), a key virulence factor of Streptococcus pneumoniae, permeabilizes eukaryotic cells by forming large trans-membrane pores. PLY imposes a puzzling multitude of diverse, often mutually excluding actions on eukaryotic cells. Whereas cytotoxicity of PLY can be directly attributed to the pore-mediated effects, mechanisms that are responsible for the PLY-induced activation of host cells are poorly understood. We show that PLY pores can be repaired and thereby PLY-induced cell death can be prevented. Pore-induced Ca2+ entry from the extracellular milieu is of paramount importance for the initiation of plasmalemmal repair. Nevertheless, active Ca2+ sequestration that prevents excessive Ca2+ elevation during the execution phase of plasmalemmal repair is of no less importance. The efficacy of plasmalemmal repair does not only define the fate of targeted cells but also intensity, duration and repetitiveness of PLY-induced Ca2+ signals in cells that were able to survive after PLY attack. Intracellular Ca2+ dynamics evoked by the combined action of pore formation and their elimination mimic the pattern of receptor-mediated Ca2+ signaling, which is responsible for the activation of host immune responses. Therefore, we postulate that plasmalemmal repair of PLY pores might provoke cellular responses that are similar to those currently ascribed to the receptor-mediated PLY effects. Our data provide new insights into the understanding of the complexity of cellular non-immune defense responses to a major pneumococcal toxin that plays a critical role in the establishment and the progression of life-threatening diseases. Therapies boosting plasmalemmal repair of host cells and their metabolic fitness might prove beneficial for the treatment of pneumococcal infections.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE Survivin is a member of the inhibitor-of-apoptosis family. Essential for tumor cell survival and overexpressed in most cancers, survivin is a promising target for anti-cancer immunotherapy. Immunogenicity has been demonstrated in multiple cancers. Nonetheless, few clinical trials have demonstrated survivin-vaccine-induced immune responses. EXPERIMENTAL DESIGN This phase I trial was conducted to test whether vaccine EMD640744, a cocktail of five HLA class I-binding survivin peptides in Montanide(®) ISA 51 VG, promotes anti-survivin T-cell responses in patients with solid cancers. The primary objective was to compare immunologic efficacy of EMD640744 at doses of 30, 100, and 300 μg. Secondary objectives included safety, tolerability, and clinical efficacy. RESULTS In total, 49 patients who received ≥2 EMD640744 injections with available baseline- and ≥1 post-vaccination samples [immunologic-diagnostic (ID)-intention-to-treat] were analyzed by ELISpot- and peptide/MHC-multimer staining, revealing vaccine-activated peptide-specific T-cell responses in 31 patients (63 %). This cohort included the per study protocol relevant ID population for the primary objective, i.e., T-cell responses by ELISpot in 17 weeks following first vaccination, as well as subjects who discontinued the study before week 17 but showed responses to the treatment. No dose-dependent effects were observed. In the majority of patients (61 %), anti-survivin responses were detected only after vaccination, providing evidence for de novo induction. Best overall tumor response was stable disease (28 %). EMD640744 was well tolerated; local injection-site reactions constituted the most frequent adverse event. CONCLUSIONS Vaccination with EMD640744 elicited T-cell responses against survivin peptides in the majority of patients, demonstrating the immunologic efficacy of EMD640744.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A prerequisite for establishment of mutualism between the host and the microbial community that inhabits the large intestine is the stringent mucosal compartmentalization of microorganisms. Microbe-loaded dendritic cells trafficking through lymphatics are arrested at the mesenteric lymph nodes, which constitute the firewall of the intestinal lymphatic circulation. We show in different mouse models that the liver, which receives the intestinal venous blood circulation, forms a vascular firewall that captures gut commensal bacteria entering the bloodstream during intestinal pathology. Phagocytic Kupffer cells in the liver of mice clear commensals from the systemic vasculature independently of the spleen through the liver's own arterial supply. Damage to the liver firewall in mice impairs functional clearance of commensals from blood, despite heightened innate immunity, resulting in spontaneous priming of nonmucosal immune responses through increased systemic exposure to gut commensals. Systemic immune responses consistent with increased extraintestinal commensal exposure were found in humans with liver disease (nonalcoholic steatohepatitis). The liver may act as a functional vascular firewall that clears commensals that have penetrated either intestinal or systemic vascular circuits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Regulatory T cells (Tregs), which are characterized by expression of the transcription factor Foxp3, are a dynamic and heterogeneous population of cells that control immune responses and prevent autoimmunity. We recently identified a subset of Tregs in murine skin with properties typical of memory cells and defined this population as memory Tregs (mTregs). Due to the importance of these cells in regulating tissue inflammation in mice, we analyzed this cell population in humans and found that almost all Tregs in normal skin had an activated memory phenotype. Compared with mTregs in peripheral blood, cutaneous mTregs had unique cell surface marker expression and cytokine production. In normal human skin, mTregs preferentially localized to hair follicles and were more abundant in skin with high hair density. Sequence comparison of TCRs from conventional memory T helper cells and mTregs isolated from skin revealed little homology between the two cell populations, suggesting that they recognize different antigens. Under steady-state conditions, mTregs were nonmigratory and relatively unresponsive; however, in inflamed skin from psoriasis patients, mTregs expanded, were highly proliferative, and produced low levels of IL-17. Taken together, these results identify a subset of Tregs that stably resides in human skin and suggest that these cells are qualitatively defective in inflammatory skin disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC) networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood. METHODS Bone marrow-derived DCs (BMDCs) were exposed in vitro to 20 or 1,000 nm polystyrene (PS) particles. Particle uptake kinetics, cell surface marker expression, soluble protein antigen uptake and degradation, as well as in vitro CD4(+) T-cell proliferation and cytokine production were analyzed by flow cytometry. In addition, co-localization of particles within the lysosomal compartment, lysosomal permeability, and endoplasmic reticulum stress were analyzed. RESULTS The frequency of PS particle-positive CD11c(+)/CD11b(+) BMDCs reached an early plateau after 20 minutes and was significantly higher for 20 nm than for 1,000 nm PS particles at all time-points analyzed. PS particles did not alter cell viability or modify expression of the surface markers CD11b, CD11c, MHC class II, CD40, and CD86. Although particle exposure did not modulate antigen uptake, 20 nm PS particles decreased the capacity of BMDCs to degrade soluble antigen, without affecting their ability to induce antigen-specific CD4(+) T-cell proliferation. Co-localization studies between PS particles and lysosomes using laser scanning confocal microscopy detected a significantly higher frequency of co-localized 20 nm particles as compared with their 1,000 nm counterparts. Neither size of PS particle caused lysosomal leakage, expression of endoplasmic reticulum stress gene markers, or changes in cytokines profiles. CONCLUSION These data indicate that although supposedly inert PS nanoparticles did not induce DC activation or alteration in CD4(+) T-cell stimulating capacity, 20 nm (but not 1,000 nm) PS particles may reduce antigen degradation through interference in the lysosomal compartment. These findings emphasize the importance of performing in-depth analysis of DC function when developing novel approaches for immune modulation with nanoparticles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interactions between dendritic cells (DCs) and T cells control the decision between activation and tolerance induction. Thromboxane A2 (TXA2) and its receptor TP have been suggested to regulate adaptive immune responses through control of T cell-DC interactions. Here, we show that this control is achieved by selectively reducing expansion of low-avidity CD4(+) T cells. During inflammation, weak tetramer-binding TP-deficient CD4(+) T cells were preferentially expanded compared with TP-proficient CD4(+) T cells. Using intravital imaging of cellular interactions in reactive peripheral lymph nodes (PLNs), we found that TXA2 led to disruption of low- but not high-avidity interactions between DCs and CD4(+) T cells. Lack of TP correlated with higher expression of activation markers on stimulated CD4(+) T cells and with augmented accumulation of follicular helper T cells (TFH), which correlated with increased low-avidity IgG responses. In sum, our data suggest that tonic suppression of weak CD4(+) T cell-DC interactions by TXA2-TP signaling improves the overall quality of adaptive immune responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Salmonella typhimurium can colonize the gut, invade intestinal tissues, and cause enterocolitis. In vitro studies suggest different mechanisms leading to mucosal inflammation, including 1) direct modulation of proinflammatory signaling by bacterial type III effector proteins and 2) disruption or penetration of the intestinal epithelium so that penetrating bacteria or bacterial products can trigger innate immunity (i.e., TLR signaling). We studied these mechanisms in vivo using streptomycin-pretreated wild-type and knockout mice including MyD88(-/-) animals lacking an adaptor molecule required for signaling via most TLRs. The Salmonella SPI-1 and the SPI-2 type III secretion systems (TTSS) contributed to inflammation. Mutants that retain only a functional SPI-1 (M556; sseD::aphT) or a SPI-2 TTSS (SB161; DeltainvG) caused attenuated colitis, which reflected distinct aspects of the colitis caused by wild-type S. typhimurium: M556 caused diffuse cecal inflammation that did not require MyD88 signaling. In contrast, SB161 induced focal mucosal inflammation requiring MyD88. M556 but not SB161 was found in intestinal epithelial cells. In the lamina propria, M556 and SB161 appeared to reside in different leukocyte cell populations as indicated by differential CD11c staining. Only the SPI-2-dependent inflammatory pathway required aroA-dependent intracellular growth. Thus, S. typhimurium can use two independent mechanisms to elicit colitis in vivo: SPI-1-dependent and MyD88-independent signaling to epithelial cells and SPI-2-dependent intracellular proliferation in the lamina propria triggering MyD88-dependent innate immune responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND The growth potential of the tumor-like Echinococcus multilocularis metacestode (causing alveolar echinococcosis, AE) is directly linked to the nature/function of the periparasitic host immune-mediated processes. We previously showed that Fibrinogen-like-protein 2 (FGL2), a novel CD4+CD25+ Treg effector molecule, was over-expressed in the liver of mice experimentally infected with E. multilocularis. However, little is known about its contribution to the control of this chronic helminth infection. METHODS/FINDINGS Key parameters for infection outcome in E. multilocularis-infected fgl2-/- (AE-fgl2-/-) and wild type (AE-WT) mice at 1 and 4 month(s) post-infection were (i) parasite load (i. e. wet weight of parasitic metacestode tissue), and (ii) parasite cell proliferation as assessed by determining E. multilocularis 14-3-3 gene expression levels. Serum FGL2 levels were measured by ELISA. Spleen cells cultured with ConA for 48h or with E. multilocularis Vesicle Fluid (VF) for 96h were analyzed ex-vivo and in-vitro. In addition, spleen cells from non-infected WT mice were cultured with rFGL2/anti-FGL2 or rIL-17A/anti-IL-17A for further functional studies. For Treg-immune-suppression-assays, purified CD4+CD25+ Treg suspensions were incubated with CD4+ effector T cells in the presence of ConA and irradiated spleen cells as APCs. Flow cytometry and qRT-PCR were used to assess Treg, Th17-, Th1-, Th2-type immune responses and maturation of dendritic cells. We showed that AE-fgl2-/- mice exhibited (as compared to AE-WT-animals) (a) a significantly lower parasite load with reduced proliferation activity, (b) an increased T cell proliferative response to ConA, (c) reduced Treg numbers and function, and (d) a persistent capacity of Th1 polarization and DC maturation. CONCLUSIONS FGL2 appears as one of the key players in immune regulatory processes favoring metacestode survival by promoting Treg cell activity and IL-17A production that contributes to FGL2-regulation. Prospectively, targeting FGL2 could be an option to develop an immunotherapy against AE and other chronic parasitic diseases.