135 resultados para Higgs physics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A search for squarks and gluinos in final states containing high-pT jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in √s = 8TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850GeV (440GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A0 = −2m0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to dielectron or dimuon final states. Results are presented from an analysis of proton-proton (pp ) collisions at a center-of-mass energy of 8 TeV corresponding to an integrated luminosity of 20.3  fb −1 in the dimuon channel. A narrow resonance with Standard Model Z couplings to fermions is excluded at 95% confidence level for masses less than 2.79 TeV in the dielectron channel, 2.53 TeV in the dimuon channel, and 2.90 TeV in the two channels combined. Limits on other model interpretations are also presented, including a grand-unification model based on the E 6 gauge group, Z ∗ bosons, minimal Z' models, a spin-2 graviton excitation from Randall-Sundrum models, quantum black holes, and a minimal walking technicolor model with a composite Higgs boson.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A search is performed for flavour-changing neutral currents in the decay of a top quark to an up-type (c, u) quark and a Higgs boson, where the Higgs boson decays to two photons. The proton-proton collision data set used corresponds to 4.7 fb−1 at √s = 7TeV and 20.3 fb−1 at √s = 8TeV collected by the ATLAS experiment at the LHC. Top quark pair events are searched for in which one top quark decays to qH and the other decays to bW. Both the hadronic and the leptonic decay modes of the W boson are used. No significant signal is observed and an upper limit is set on the t → qH branching ratio of 0.79% at the 95% confidence level. The corresponding limit on the tqH coupling combination qλ2t cH + λ2t uH is 0.17.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A search for the direct production of charginos and neutralinos in final states with three leptons and missing transverse momentum is presented. The analysis is based on 20.3 fb−1 of √s = 8TeV proton-proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with the Standard Model expectations and limits are set in R-parity-conserving phenomenological Minimal Supersymmetric Standard Models and in simplified supersymmetric models, significantly extending previous results. For simplified supersymmetric models of direct chargino (˜χ±1 ) and next-to-lightest neutralino (˜χ02) production with decays to lightest neutralino(˜χ01) via either all three generations of sleptons, staus only, gauge bosons, or Higgs bosons, ˜χ±1 and ˜χ02 masses are excluded up to 700GeV, 380GeV, 345GeV, or 148GeV respectively, for a massless ˜χ01.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2–30 keV, where the sensitivity to solar pp and 7Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ~2X 10-48 cm2 and WIMP masses around 50 GeV c 2, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ~6 GeV c-2 to cross sections above ~4X10-45cm2. DARWIN could reach a competitive half-life sensitivity of 5.6X1026 y to the neutrinoless double beta decay of 136Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at 0T > 16 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Even though the Standard Model with a Higgs mass mH = 125GeV possesses no bulk phase transition, its thermodynamics still experiences a "soft point" at temperatures around T = 160GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The results are tabulated in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial "structure" visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of percent from the free value even at T > 160GeV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a precise theoretical prediction for the signal-background interference process of gg(→ h ∗) → ZZ, which is useful to constrain the Higgs boson decay width and to measure Higgs couplings to the SM particles. The approximate NNLO K-factor is in the range of 2.05 − 2.45 (1.85 − 2.25), depending on M ZZ , at the 8 (13) TeV LHC. And the soft gluon resummation can increase the approximate NNLO result by about 10% at both the 8 TeV and 13 TeV LHC. The theoretical uncertainties including the scale, uncalculated multi-loop amplitudes of the background and PDF+αs are roughly O(10%) at NNLL′. We also confirm that the approximate K-factors in the interference and the pure signal processes are the same.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weak radiative decays of the B mesons belong to the most important flavor changing processes that provide constraints on physics at the TeV scale. In the derivation of such constraints, accurate standard model predictions for the inclusive branching ratios play a crucial role. In the current Letter we present an update of these predictions, incorporating all our results for the O(α2s) and lower-order perturbative corrections that have been calculated after 2006. New estimates of nonperturbative effects are taken into account, too. For the CP- and isospin-averaged branching ratios, we find Bsγ=(3.36±0.23)×10−4 and Bdγ=(1.73+0.12−0.22)×10−5, for Eγ>1.6  GeV. Both results remain in agreement with the current experimental averages. Normalizing their sum to the inclusive semileptonic branching ratio, we obtain Rγ≡(Bsγ+Bdγ)/Bcℓν=(3.31±0.22)×10−3. A new bound from Bsγ on the charged Higgs boson mass in the two-Higgs-doublet-model II reads MH±>480  GeV at 95% C.L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the framework of the MSSM, we examine several simplified models where only a few superpartners are light. This allows us to study WIMP-nucleus scattering in terms of a handful of MSSM parameters and thereby scrutinize their impact on dark matter direct-detection experiments. Focusing on spin-independent WIMP-nucleon scattering, we derive simplified, analytic expressions for the Wilson coefficients associated with Higgs and squark exchange. We utilize these results to study the complementarity of constraints due to direct-detection, flavor, and collider experiments. We also identify parameter configurations that produce (almost) vanishing cross sections. In the proximity of these so-called blind spots, we find that the amount of isospin violation may be much larger than typically expected in the MSSM. This feature is a generic property of parameter regions where cross sections are suppressed, and highlights the importance of a careful analysis of the nucleon matrix elements and the associated hadronic uncertainties. This becomes especially relevant once the increased sensitivity of future direct-detection experiments corners the MSSM into these regions of parameter space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper revives a theoretical definition of party coherence as being composed of two basic elements, cohesion and factionalism, to propose and apply a novel empirical measure based on spin physics. The simultaneous analysis of both components using a single measurement concept is applied to data representing the political beliefs of candidates in the Swiss general elections of 2003 and 2007, proposing a connection between the coherence of the beliefs party members hold and the assessment of parties being at risk of splitting. We also compare our measure with established polarization measures and demonstrate its advantage with respect to multi-dimensional data that lack clear structure. Furthermore, we outline how our analysis supports the distinction between bottom-up and top-down mechanisms of party splitting. In this way, we are able to turn the intuition of coherence into a defined quantitative concept that, additionally, offers a methodological basis for comparative research of party coherence. Our work serves as an example of how a complex systems approach allows to get a new perspective on a long-standing issue in political science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the physical Higgs mass the standard model symmetry restoration phase transition is a smooth cross-over. We study the thermodynamics of the cross-over using numerical lattice Monte Carlo simulations of an effective SU(2)×U(1) gauge+Higgs theory, significantly improving on previously published results. We measure the Higgs field expectation value, thermodynamic quantities like pressure, energy density, speed of sound and heat capacity, and screening masses associated with the Higgs and Z fields. While the cross-over is smooth, it is very well defined with a width of only ∼5  GeV. We measure the cross-over temperature from the maximum of the susceptibility of the Higgs condensate, with the result Tc=159.5±1.5  GeV. Outside of the narrow cross-over region the perturbative results agree well with nonperturbative ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of HyperKamiokande is the study of CP asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this paper, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis uses the framework and systematic uncertainties derived from the ongoing T2K experiment. With a total exposure of 7.5 MW × 10⁷ s integrated proton beam power (corresponding to 1.56 × 10²² protons on target with a 30 GeV proton beam) to a 2.5-degree off-axis neutrino beam, it is expected that the leptonic CP phase δCP can be determined to better than 19 degrees for all possible values of δCP , and CP violation can be established with a statistical significance of more than 3 σ (5 σ) for 76% (58%) of the δCP parameter space. Using both νe appearance and νµ disappearance data, the expected 1σ uncertainty of sin²θ₂₃ is 0.015(0.006) for sin²θ₂₃ = 0.5(0.45).

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cyclotron laboratory for radioisotope production and multi-disciplinary research at the Bern University Hospital (Inselspital) is based on an 18-MeV proton accelerator, equipped with a specifically conceived 6-m long external beam line, ending in a separate bunker. This facility allows performing daily positron emission tomography (PET) radioisotope production and research activities running in parallel. Some of the latest developments on accelerator and detector physics are reported. They encompass novel detectors for beam monitoring and studies of low current beams.