152 resultados para Diffusion Weighted Imaging,Diffusion Tensor imaging,rene policistico,coefficiente di diffusione apparente
Resumo:
We aimed to examine different intratumoral changes after single-dose and fractionated radiotherapy, using diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI in a rat rhabdomyosarcoma model. Four WAG/Rij rats with rhabdomyosarcomas in the flanks received single-dose radiotherapy of 8 Gy, and four others underwent fractionated radiotherapy (five times 3 Gy). In rats receiving single-dose radiotherapy, a significant perfusion decrease was found in the first 2 days post-treatment, with slow recuperation afterwards. No substantial diffusion changes could be seen; tumor growth delay was 12 days. The rats undergoing fractionated radiotherapy showed a similar perfusion decrease early after the treatment. However, a very strong increase in apparent diffusion coefficient occurred in the first 10 days; growth delay was 18 days. DW-MRI and DCE-MRI can be used to show early tumoral changes induced by radiotherapy. Single-dose and fractionated radiotherapy induce an immediate perfusion effect, while the latter induces more intratumoral necrosis.
Resumo:
A 7-year-old female spayed Scottish Terrier was presented with central nervous system symptoms suggestive of a lesion in the forebrain. Magnetic resonance (MR) imaging revealed multifocal disease in the forebrain. Because of complete lack of contrast enhancement, the changes were attributed to lesions of inflammatory origin.Histopathology of the brain revealed multiplemetastatic lesions of an adenocarcinoma. Brainmetastases in general show contrast enhancement. The reason for a complete absence of contrast enhancement is unknown. Previous administration of corticosteroids, increased diffusion time of contrast medium, increased intracranial pressure in combination with an intact blood–tumor barrier is discussed as possible reasons.
Resumo:
OBJECTIVE The aim of this work is to investigate and compare cardiac proton density (PD) weighted fast field echo (FFE) post-mortem magnetic resonance (PMMR) imaging with standard cardiac PMMR imaging (T1-weighted and T2-weighted turbo spin-echo (TSE)), postmortem CT (PMCT) as well as autopsy. MATERIALS AND METHODS Two human cadavers sequentially underwent cardiac PMCT and PMMR imaging (PD-weighted FFE, T1-weighted and T2-weighted TSE) and autopsy. The cardiac PMMR images were compared to each other as well as to PMCT and autopsy findings. RESULTS For the first case, cardiac PMMR exhibited a focal region of low signal in PD-weighted FFE and T2-weighted TSE images, surrounded by a signal intense rim in the T2-weighted images. T1-weighted TSE and PMCT did not appear to identify any focal abnormality. Macroscopic inspection identified a blood clot; histology confirmed this to be a thrombus with an adhering myocardial infarction. In the second case, a myocardial rupture with heart tamponade was identified in all PMMR images, located at the anterior wall of the left ventricle; PMCT excluded additional ruptures. In PD-weighted FFE and T2-weighted TSE images, it occurred hypo-intense, while resulting in small clustered hyper-intense spots in T1-weighted TSE. Autopsy confirmed the PMMR and PMCT findings. CONCLUSIONS Presented initial results have shown PD-weighted FFE to be a valuable imaging sequence in addition to traditional T2-weighted TSE imaging for blood clots and myocardial haemorrhage with clearer contrast between affected and healthy myocardium.
Resumo:
Background and Purpose—The question whether cerebral microbleeds (CMBs) visible on MRI in acute stroke increase the risk for intracerebral hemorrhages (ICHs) or worse outcome after thrombolysis is unresolved. The aim of this study was to analyze the impact of CMB detected with pretreatment susceptibility-weighted MRI on ICH occurrence and outcome. Methods—From 2010 to 2013 we treated 724 patients with intravenous thrombolysis, endovascular therapy, or intravenous thrombolysis followed by endovascular therapy. A total of 392 of the 724 patients were examined with susceptibility-weighted MRI before treatment. CMBs were rated retrospectively. Multivariable regression analysis was used to determine the impact of CMB on ICH and outcome. Results—Of 392 patients, 174 were treated with intravenous thrombolysis, 150 with endovascular therapy, and 68 with intravenous thrombolysis followed by endovascular therapy. CMBs were detected in 79 (20.2%) patients. Symptomatic ICH occurred in 21 (5.4%) and asymptomatic in 75 (19.1%) patients, thereof 61 (15.6%) bleedings within and 35 (8.9%) outside the infarct. Neither the existence of CMB, their burden, predominant location nor their presumed pathogenesis influenced the risk for symptomatic or asymptomatic ICH. A higher CMB burden marginally increased the risk for ICH outside the infarct (P=0.048; odds ratio, 1.004; 95% confidence interval, 1.000–1.008). Conclusions—CMB detected on pretreatment susceptibility-weighted MRI did not increase the risk for ICH or worsen outcome, even when CMB burden, predominant location, or presumed pathogenesis was considered. There was only a small increased risk for ICH outside the infarct with increasing CMB burden that does not advise against thrombolysis in such patients.
Resumo:
K-feldspar (Kfs) from the Chain of Ponds Pluton (CPP) is the archetypal reference material, on which thermochronological modeling of Ar diffusion in discrete “domains” was founded. We re-examine the CPP Kfs using cathodoluminescence and back-scattered electron imaging, transmission electron microscopy, and electron probe microanalysis. 40Ar/39Ar stepwise heating experiments on different sieve fractions, and on handpicked and unpicked aliquots, are compared. Our results reproduce the staircase-shaped age spectrum and the Arrhenius trajectory of the literature sample, confirming that samples collected from the same locality have an identical Ar isotope record. Even the most pristine-looking Kfs from the CPP contains successive generations of secondary, metasomatic/retrograde mineral replacements that post-date magmatic crystallization. These chemically and chronologically distinct phases are responsible for its staircase-shaped age spectra, which are modified by handpicking. While genuine within-grain diffusion gradients are not ruled out by these data, this study demonstrates that the most important control on staircase-shaped age spectra is the simultaneous presence of heterochemical, diachronous post-magmatic mineral growth. At least five distinct mineral species were identified in the Kfs separate, three of which can be traced to external fluids interacting with the CPP in a chemically open system. Sieve fractions have size-shifted Arrhenius trajectories, negating the existence of the smallest “diffusion domains”. Heterochemical phases also play an important role in producing non-linear trajectories. In vacuo degassing rates recovered from Arrhenius plots are neither related to true Fick’s Law diffusion nor to the staircase shape of the age spectra. The CPP Kfs used to define the "diffusion domain" model demonstrates the predominance of metasomatic alteration by hydrothermal fluids and recrystallization in establishing the natural Ar distribution amongst different coexisting phases that gives rise to the staircase-shaped age spectrum. Microbeam imaging of textures is as essential for 40Ar-39Ar hygrochronology as it is for U-Pb geochronology.
Resumo:
BACKGROUND AND PURPOSE The prevalence and clinical importance of primarily fragmented thrombi in patients with acute ischemic stroke remains elusive. Whole-brain SWI was used to detect multiple thrombus fragments, and their clinical significance was analyzed. MATERIALS AND METHODS Pretreatment SWI was analyzed for the presence of a single intracranial thrombus or multiple intracranial thrombi. Associations with baseline clinical characteristics, complications, and clinical outcome were studied. RESULTS Single intracranial thrombi were detected in 300 (92.6%), and multiple thrombi, in 24 of 324 patients (7.4%). In 23 patients with multiple thrombi, all thrombus fragments were located in the vascular territory distal to the primary occluding thrombus; in 1 patient, thrombi were found both in the anterior and posterior circulation. Only a minority of thrombus fragments were detected on TOF-MRA, first-pass gadolinium-enhanced MRA, or DSA. Patients with multiple intracranial thrombi presented with more severe symptoms (median NIHSS scores, 15 versus 11; P = .014) and larger ischemic areas (median DWI ASPECTS, 5 versus 7; P = .006); good collaterals, rated on DSA, were fewer than those in patients with a single thrombus (21.1% versus 44.2%, P = .051). The presence of multiple thrombi was a predictor of unfavorable outcome at 3 months (P = .040; OR, 0.251; 95% CI, 0.067-0.939). CONCLUSIONS Patients with multiple intracranial thrombus fragments constitute a small subgroup of patients with stroke with a worse outcome than patients with single thrombi.
Resumo:
High Resolution Magic Angle Spinning (HR-MAS) NMR allows metabolic characterization of biopsies. HR-MAS spectra from tissues of most organs show strong lipid contributions that are overlapping metabolite regions, which hamper metabolite estimation. Metabolite quantification and analysis would benefit from a separation of lipids and small metabolites. Generally, a relaxation filter is used to reduce lipid contributions. However, the strong relaxation filter required to eliminate most of the lipids also reduces the signals for small metabolites. The aim of our study was therefore to investigate different diffusion editing techniques in order to employ diffusion differences for separating lipid and small metabolite contributions in the spectra from different organs for unbiased metabonomic analysis. Thus, 1D and 2D diffusion measurements were performed, and pure lipid spectra that were obtained at strong diffusion weighting (DW) were subtracted from those obtained at low DW, which include both small metabolites and lipids. This subtraction yielded almost lipid free small metabolite spectra from muscle tissue. Further improved separation was obtained by combining a 1D diffusion sequence with a T2-filter, with the subtraction method eliminating residual lipids from the spectra. Similar results obtained for biopsies of different organs suggest that this method is applicable in various tissue types. The elimination of lipids from HR-MAS spectra and the resulting less biased assessment of small metabolites have potential to remove ambiguities in the interpretation of metabonomic results. This is demonstrated in a reproducibility study on biopsies from human muscle.
Resumo:
Tumours in the oral cavity and oropharynx differ in presentation and prognosis and the detection of spread of tumour from one subsite to another is essential for the T-staging. This article reviews the anatomy and describes the pattern of spread of different cancers arising in the oral cavity and oropharynx; the imaging findings on computerized tomography and magnetic resonance imaging are also described. Brief mention is made on the role of newer imaging modalities such as [(18)F]fluorodeoxyglucose-positron emission tomography/computed tomography, perfusion studies and diffusion-weighted magnetic resonance imaging.
Resumo:
It was our aim to investigate the gadolinium diethylenetriaminepentaacetate (Gd-DTPA(2-) ) enhancement kinetics in the menisci of the knee joint over a prolonged period of time. Six asymptomatic volunteers (four men and two women; mean age, 25 ± 2.4 years) were enrolled. Sagittal, T(1) -weighted, spin-echo MR sequences of the right knee joint were obtained at 3 T. Imaging was performed before (baseline), 1 h after and in half-hour intervals up to 9 h after the intravenous administration of 0.2 mmol/kg of Gd-DTPA(2-) . To measure the rates of contrast enhancement relative to the baseline, regions of interest that covered the anterior and posterior horns of the medial and lateral meniscus were defined on each of two adjacent sections, and enhancement curves were constructed. An enhancement peak between 2.5 and 4.5 h after Gd-DTPA(2-) administration was observed, and analysis of variance also revealed no significant difference (p=0.94), in terms of enhancement, within this time interval. Pair-wise, post hoc testing also revealed no significant differences between 2.5 and 3, 3 and 3.5, 3.5 and 4, and 4 and 4.5 h post Gd-DTPA(2-) application. Our preliminary data therefore suggest that the time window suitable for a dGEMRIC (delayed gadolinium-enhanced MRI of cartilage)-like T(1) mapping of the menisci is relatively short, and lies between 2.5 and 4.5 h after Gd-DTPA(2-) injection.
Resumo:
AIMS: Postmortem magnetic resonance (MRI) imaging is currently evaluated as alternative to traditional autopsy and myocardial infarction plays a key role therein. The aim of this study is to determine the suitability of postmortem MRI in infarction age staging. METHODS AND RESULTS: In eight human forensic corpses presenting with a total of 11 myocardial infarcted areas, short-axis, transversal, and longitudinal long-axis images (T1, T2, stir, flair) were acquired in situ on a 1.5 T system. During subsequent autopsy, the section technique was adapted to short-axis images. Histological investigations were performed along the entire circumference of the left ventricle to correlate the signal alteration in MR to the histological appearance. Two peracute infarctions were not detected in MRI and autopsy. Four acute infarcted areas presented with decreased signal in necrotic centres and increased signal in marginal myocardial regions (T2-weighted). T1-weighted images showed local hyperintensities when intramyocardial haemorrhage occurred. Four cases showed subacute infarctions with hyperintense regions in T2-weighted images and no signal alteration in T1-weighted images. Four chronic myocardial infarctions showed distinctively decreased signals in all applied sequences. CONCLUSION: Postmortem MRI demonstrates myocardial infarction in situ and allows for an infarction age estimation based on the signal behaviour.
Magnetic resonance imaging features of orbital inflammation with intracranial extension in four dogs
Resumo:
This retrospective study describes the clinical and magnetic resonance (MR) imaging features of chronic orbital inflammation with intracranial extension in four dogs (two Dachshunds, one Labrador, one Swiss Mountain). Intracranial extension was observed through the optic canal (n=1), the orbital fissure (n=4), and the alar canal (n=1). On T1-weighted images structures within the affected skull foramina could not be clearly differentiated, but were all collectively isointense to hypointense compared with the contralateral, unaffected side, or compared with gray matter. On T2-, short tau inversion recovery (STIR)-, or fluid-attenuated inversion recovery (FLAIR)-weighted images structures within the affected skull foramina appeared hyperintense compared with gray matter, and extended with increased signal into the rostral cranial fossa (n=1) and middle cranial fossa (n=4). Contrast enhancement at the level of the affected skul foramina as well as at the skull base in continuity with the orbital fissure was observed in all patients. Brain edema or definite meningeal enhancement could not be observed, but a close anatomic relationship of the abnormal tissue to the cavernous sinus was seen in two patients. Diagnosis was confirmed in three dogs (one cytology, two biopsy, one necropsy) and was presumptive in one based on clinical improvement after treatment. This study is limited by its small sample size, but provides evidence for a potential risk of intracranial extension of chronic orbital inflammation. This condition can be identified best by abnormal signal increase at the orbital fissure on transverse T2-weighted images, on dorsal STIR images, or on postcontrast transverse or dorsal images.
Resumo:
PURPOSE: To evaluate the function of the parotid glands before and during gustatory stimulation, using an intrinsic susceptibility-weighted MRI method (blood oxygenation level dependent, BOLD-MRI) at 1.5T and 3T. MATERIALS AND METHODS: A total of 10 and 13 volunteers were investigated at 1.5T and 3T, respectively. Measurements were performed before and during gustatory stimulation using ascorbate. Circular regions of interest (ROIs) were delineated in the left and right parotid glands, and in the masseter muscle for comparison. The effects of stimulation were evaluated by calculating the difference between the relaxation rates, DeltaR(2)*. Baseline and stimulation were statistically compared (Student's t-tests), merging both parotid glands. RESULTS: The averaged DeltaR(2)* values prestimulation obtained in all parotid glands were stable (-0.61 to 0.38 x 10(-3) seconds(-1)). At 3T, these values were characterized by an initial drop (to -2.7 x 10(-3) seconds(-1)) followed by a progressive increase toward the baseline. No significant difference was observed between baseline and parotid gland stimulation at 1.5T, neither for the masseter muscle at both field strengths. A considerable interindividual variability (over 76%) was noticed at both magnetic fields. CONCLUSION: BOLD-MRI at 3T was able to detect DeltaR(2)* changes in the parotid glands during gustatory stimulation, consistent with an increase in oxygen consumption during saliva production.