173 resultados para CT, Radiation Dose, Image Quality


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an application and sample independent method for the automatic discrimination of noise and signal in optical coherence tomography Bscans. The proposed algorithm models the observed noise probabilistically and allows for a dynamic determination of image noise parameters and the choice of appropriate image rendering parameters. This overcomes the observer variability and the need for a priori information about the content of sample images, both of which are challenging to estimate systematically with current systems. As such, our approach has the advantage of automatically determining crucial parameters for evaluating rendered image quality in a systematic and task independent way. We tested our algorithm on data from four different biological and nonbiological samples (index finger, lemon slices, sticky tape, and detector cards) acquired with three different experimental spectral domain optical coherence tomography (OCT) measurement systems including a swept source OCT. The results are compared to parameters determined manually by four experienced OCT users. Overall, our algorithm works reliably regardless of which system and sample are used and estimates noise parameters in all cases within the confidence interval of those found by observers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE Cochlear implants (CIs) are standard treatment for postlingually deafened individuals and prelingually deafened children. This human cadaver study evaluated diagnostic usefulness, image quality and artifacts in 1.5T and 3T magnetic resonance (MR) brain scans after CI with a removable magnet. METHODS Three criteria (diagnostic usefulness, image quality, artifacts) were assessed at 1.5T and 3T in five cadaver heads with CI. The brain magnetic resonance scans were performed with and without the magnet in situ. The criteria were analyzed by two blinded neuroradiologists, with focus on image distortion and limitation of the diagnostic value of the acquired MR images. RESULTS MR images with the magnet in situ were all compromised by artifacts caused by the CI. After removal of the magnet, MR scans showed an unequivocal artifact reduction with significant improvement of the image quality and diagnostic usefulness, both at 1.5T and 3T. Visibility of the brain stem, cerebellopontine angle, and parieto-occipital lobe ipsilateral to the CI increased significantly after magnet removal. CONCLUSIONS The results indicate the possible advantages for 1.5T and 3T MR scanning of the brain in CI carriers with removable magnets. Our findings support use of CIs with removable magnets, especially in patients with chronic intracranial pathologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION External beam radiotherapy (EBRT), with or without androgen deprivation therapy (ADT), is an established treatment option for nonmetastatic prostate cancer. Despite high-level evidence from several randomized trials, risk group stratification and treatment recommendations vary due to contradictory or inconclusive data, particularly with regard to EBRT dose prescription and ADT duration. Our aim was to investigate current patterns of practice in primary EBRT for prostate cancer in Switzerland. MATERIALS AND METHODS Treatment recommendations on EBRT and ADT for localized and locally advanced prostate cancer were collected from 23 Swiss radiation oncology centers. Written recommendations were converted into center-specific decision trees, and analyzed for consensus and differences using a dedicated software tool. Additionally, specific radiotherapy planning and delivery techniques from the participating centers were assessed. RESULTS The most commonly prescribed radiation dose was 78 Gy (range 70-80 Gy) across all risk groups. ADT was recommended for intermediate-risk patients for 6 months in over 80 % of the centers, and for high-risk patients for 2 or 3 years in over 90 % of centers. For recommendations on combined EBRT and ADT treatment, consensus levels did not exceed 39 % in any clinical scenario. Arc-based intensity-modulated radiotherapy (IMRT) is implemented for routine prostate cancer radiotherapy by 96 % of the centers. CONCLUSION Among Swiss radiation oncology centers, considerable ranges of radiotherapy dose and ADT duration are routinely offered for localized and locally advanced prostate cancer. In the vast majority of cases, doses and durations are within the range of those described in current evidence-based guidelines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new haptic interface device is suggested, which can be used for functional magnetic resonance imaging (fMRI) studies. The basic component of this 1 DOF haptic device are two coils that produce a Lorentz force induced by the large static magnetic field of the MR scanner. A MR-compatible optical angular encoder and a optical force sensor enable the implementation of different control architectures for haptic interactions. The challenge was to provide a large torque, and not to affect image quality by the currents applied in the device. The haptic device was tested in a 3T MR scanner. With a current of up to 1A and a distance of 1m to the focal point of the MR-scanner it was possible to generate torques of up to 4 Nm. Within these boundaries image quality was not affected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The aim of this study was to evaluate the validity and the inter- and intra-examiner reliability of panoramic-radiograph-driven findings of different maxillary sinus anatomic variations and pathologies, which had initially been prediagnosed by cone beam computed tomography (CBCT). Methods: After pairs of two-dimensional (2D) panoramic and three-dimensional (3D) CBCT images of patients having received treatment at the outpatient department had been screened, the predefinition of 54 selected maxillary sinus conditions was initially performed on CBCT images by two blinded consultants individually using a questionnaire that defined ten different clinically relevant findings. Using the identic questionnaire, these consultants performed the evaluation of the panoramic radiographs at a later time point. The results were analyzed for inter-imaging differences in the evaluation of the maxillary sinus between 2D and 3D imaging methods. Additionally, two resident groups (first year and last year of training) performed two diagnostic runs of the panoramic radiographs and results were analyzed for inter- and intra-observer reliability. Results: There is a moderate risk for false diagnosis of findings of the maxillary sinus if only panoramic radiography is used. Based on the ten predefined conditions, solely maxillary bone cysts penetrating into the sinus were frequently detected differently comparing 2D to 3D diagnostics. Additionally, on panoramic radiographs, the inter-observer comparison demonstrated that basal septa were significantly often rated differently and the intra-observer comparison showed a significant lack in reliability in detecting maxillary bone cysts penetrating into the sinus. Conclusions: Panoramic radiography provides the most information on the maxillary sinus, and it may be an adequate imaging method. However, particular findings of the maxillary sinus in panoramic imaging may be based on a rather examiner-dependent assessment. Therefore, a persistent and precise evaluation of specific conditions of the maxillary sinus may only be possible using CBCT because it provides additional information compared to panoramic radiography. This might be relevant for consecutive surgical procedures; consequently, we recommend CBCT if a precise preoperative evaluation is mandatory. However, higher radiation dose and costs of 3D imaging need to be considered. Keywords: Panoramic radiography; Cone beam computed tomography; Maxillary sinus; Inter-imaging method differences; Inter-examiner reliability; Intra-examiner reliability

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose To this day, the slit lamp remains the first tool used by an ophthalmologist to examine patient eyes. Imaging of the retina poses, however, a variety of problems, namely a shallow depth of focus, reflections from the optical system, a small field of view and non-uniform illumination. For ophthalmologists, the use of slit lamp images for documentation and analysis purposes, however, remains extremely challenging due to large image artifacts. For this reason, we propose an automatic retinal slit lamp video mosaicking, which enlarges the field of view and reduces amount of noise and reflections, thus enhancing image quality. Methods Our method is composed of three parts: (i) viable content segmentation, (ii) global registration and (iii) image blending. Frame content is segmented using gradient boosting with custom pixel-wise features. Speeded-up robust features are used for finding pair-wise translations between frames with robust random sample consensus estimation and graph-based simultaneous localization and mapping for global bundle adjustment. Foreground-aware blending based on feathering merges video frames into comprehensive mosaics. Results Foreground is segmented successfully with an area under the curve of the receiver operating characteristic curve of 0.9557. Mosaicking results and state-of-the-art methods were compared and rated by ophthalmologists showing a strong preference for a large field of view provided by our method. Conclusions The proposed method for global registration of retinal slit lamp images of the retina into comprehensive mosaics improves over state-of-the-art methods and is preferred qualitatively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE The aim of this study was to compare quantitative and semiquantitative parameters (signal-to-noise ratio [SNR], contrast-to-noise ratio [CNR], image quality, diagnostic confidence) from a standard brain magnetic resonance imaging examination encompassing common neurological disorders such as demyelinating disease, gliomas, cerebrovascular disease, and epilepsy, with comparable sequence protocols and acquisition times at 3 T and at 7 T. MATERIALS AND METHODS Ten healthy volunteers and 4 subgroups of 40 patients in total underwent comparable magnetic resonance protocols with standard diffusion-weighted imaging, 2D and 3D turbo spin echo, 2D and 3D gradient echo and susceptibility-weighted imaging of the brain (10 sequences) at 3 T and 7 T. The subgroups comprised patients with either lesional (n = 5) or nonlesional (n = 4) epilepsy, intracerebral tumors (n = 11), demyelinating disease (n = 11) (relapsing-remitting multiple sclerosis [MS, n = 9], secondary progressive MS [n = 1], demyelinating disease not further specified [n = 1]), or chronic cerebrovascular disorders [n = 9]). For quantitative analysis, SNR and CNR were determined. For a semiquantitative assessment of the diagnostic confidence, a 10-point scale diagnostic confidence score (DCS) was applied. Two experienced radiologists with additional qualification in neuroradiology independently assessed, blinded to the field strength, 3 pathology-specific imaging criteria in each of the 4 disease groups and rated their diagnostic confidence. The overall image quality was semiquantitatively assessed using a 4-point scale taking into account whether diagnostic decision making was hampered by artifacts or not. RESULTS Without correction for spatial resolution, SNR was higher at 3 T except in the T2 SPACE 3D, DWI single shot, and DIR SPACE 3D sequences. The SNR corrected by the ratio of 3 T/7 T voxel sizes was higher at 7 T than at 3 T in 10 of 11 sequences (all except for T1 MP2RAGE 3D).In CNR, there was a wide variation between sequences and patient cohorts, but average CNR values were broadly similar at 3 T and 7 T.DCS values for all 4 pathologic entities were higher at 7 T than at 3 T. The DCS was significantly higher at 7 T for diagnosis and exclusion of cortical lesions in vascular disease. A tendency to higher DCS at 7 T for cortical lesions in MS was observed, and for the depiction of a central vein and iron deposits within MS lesions. Despite motion artifacts, DCS values were higher at 7 T for the diagnosis and exclusion of hippocampal sclerosis in mesial temporal lobe epilepsy (improved detection of the hippocampal subunits). Interrater agreement was 69.7% at 3 T and 93.3% at 7 T. There was no significant difference in the overall image quality score between 3 T and 7 T taking into account whether diagnostic decision making was hampered by artifacts or not. CONCLUSIONS Ultra-high-field magnetic resonance imaging at 7 T compared with 3 T yielded an improved diagnostic confidence in the most frequently encountered neurologic disorders. Higher spatial resolution and contrast were identified as the main contributory factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

to report acute and late toxicity in prostate cancer patients treated by high-dose intensity-modulated radiation therapy (IMRT) with daily image-guidance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE Different international target volume delineation guidelines exist and different treatment techniques are available for salvage radiation therapy (RT) for recurrent prostate cancer, but less is known regarding their respective applicability in clinical practice. METHODS AND MATERIALS A randomized phase III trial testing 64 Gy vs 70 Gy salvage RT was accompanied by an intense quality assurance program including a site-specific and study-specific questionnaire and a dummy run (DR). Target volume delineation was performed according to the European Organisation for the Research and Treatment of Cancer guidelines, and a DR-based treatment plan was established for 70 Gy. Major and minor protocol deviations were noted, interobserver agreement of delineated target contours was assessed, and dose-volume histogram (DVH) parameters of different treatment techniques were compared. RESULTS Thirty European centers participated, 43% of which were using 3-dimensional conformal RT (3D-CRT), with the remaining centers using intensity modulated RT (IMRT) or volumetric modulated arc technique (VMAT). The first submitted version of the DR contained major deviations in 21 of 30 (70%) centers, mostly caused by inappropriately defined or lack of prostate bed (PB). All but 5 centers completed the DR successfully with their second submitted version. The interobserver agreement of the PB was moderate and was improved by the DR review, as indicated by an increased κ value (0.59 vs 0.55), mean sensitivity (0.64 vs 0.58), volume of total agreement (3.9 vs 3.3 cm(3)), and decrease in the union volume (79.3 vs 84.2 cm(3)). Rectal and bladder wall DVH parameters of IMRT and VMAT vs 3D-CRT plans were not significantly different. CONCLUSIONS The interobserver agreement of PB delineation was moderate but was improved by the DR. Major deviations could be identified for the majority of centers. The DR has improved the acquaintance of the participating centers with the trial protocol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE Patients with biochemical failure (BF) after radical prostatectomy may benefit from dose-intensified salvage radiation therapy (SRT) of the prostate bed. We performed a randomized phase III trial assessing dose intensification. PATIENTS AND METHODS Patients with BF but without evidence of macroscopic disease were randomly assigned to either 64 or 70 Gy. Three-dimensional conformal radiation therapy or intensity-modulated radiation therapy/rotational techniques were used. The primary end point was freedom from BF. Secondary end points were acute toxicity according to the National Cancer Institute Common Terminology Criteria for Adverse Events (version 4.0) and quality of life (QoL) according to the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaires C30 and PR25. RESULTS Three hundred fifty patients were enrolled between February 2011 and April 2014. Three patients withdrew informed consent, and three patients were not eligible, resulting in 344 patients age 48 to 75 years in the safety population. Thirty patients (8.7%) had grade 2 and two patients (0.6%) had grade 3 genitourinary (GU) baseline symptoms. Acute grade 2 and 3 GU toxicity was observed in 22 patients (13.0%) and one patient (0.6%), respectively, with 64 Gy and in 29 patients (16.6%) and three patients (1.7%), respectively, with 70 Gy (P = .2). Baseline grade 2 GI toxicity was observed in one patient (0.6%). Acute grade 2 and 3 GI toxicity was observed in 27 patients (16.0%) and one patient (0.6%), respectively, with 64 Gy, and in 27 patients (15.4%) and four patients (2.3%), respectively, with 70 Gy (P = .8). Changes in early QoL were minor. Patients receiving 70 Gy reported a more pronounced and clinically relevant worsening in urinary symptoms (mean difference in change score between arms, 3.6; P = .02). CONCLUSION Dose-intensified SRT was associated with low rates of acute grade 2 and 3 GU and GI toxicity. The impact of dose-intensified SRT on QoL was minor, except for a significantly greater worsening in urinary symptoms.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Daily use of conventional electronic portal imaging devices (EPID) for organ tracking is limited due to the relatively high dose required for high quality image acquisition. We studied the use of a novel dose saving acquisition mode (RadMode) allowing to take images with one monitor unit per image in prostate cancer patients undergoing intensity-modulated radiotherapy (IMRT) and tracking of implanted fiducial gold markers. PATIENTS AND METHODS: Twenty five patients underwent implantation of three fiducial gold markers prior to the planning CT. Before each treatment of a course of 37 fractions, orthogonal localization images from the antero-posterior and from the lateral direction were acquired. Portal images of both the setup procedure and the five IMRT treatment beams were analyzed. RESULTS: On average, four localization images were needed for a correct patient setup, resulting in four monitor units extra dose per fraction. The mean extra dose delivered to the patient was thereby increased by 1.2%. The procedure was precise enough to reduce the mean displacements prior to treatment to < o =0.3 mm. CONCLUSIONS: The use of a new dose saving acquisition mode enables to perform daily EPID-based prostate tracking with a cumulative extra dose of below 1 Gy. This concept is efficiently used in IMRT-treated patients, where separation of setup beams from treatment beams is mandatory.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Quality of life (QL) is an important consideration when comparing adjuvant therapies for early breast cancer, especially if they differ substantially in toxicity. We evaluated QL and Q-TWiST among patients randomised to adjuvant dose-intensive epirubicin and cyclophosphamide administered with filgrastim and progenitor cell support (DI-EC) or standard-dose anthracycline-based chemotherapy (SD-CT). We estimated the duration of chemotherapy toxicity (TOX), time without disease symptoms and toxicity (TWiST), and time following relapse (REL). Patients scored QL indicators. Mean durations for the three transition times were weighted with patient reported utilities to obtain mean Q-TWiST. Patients receiving DI-EC reported worse QL during TOX, especially treatment burden (month 3: P<0.01), but a faster recovery 3 months following chemotherapy than patients receiving SD-CT, for example, less coping effort (P<0.01). Average Q-TWiST was 1.8 months longer for patients receiving DI-EC (95% CI, -2.5 to 6.1). Q-TWiST favoured DI-EC for most values of utilities attached to TOX and REL. Despite greater initial toxicity, quality-adjusted survival was similar or better with dose-intensive treatment as compared to standard treatment. Thus, QL considerations should not be prohibitive if future intensive therapies show superior efficacy.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The detection rate of pulmonary emboli (PE) with computed tomography angiography (CTA) using either a standard or a low-dose protocol, combining reduced radiation exposure and iodine delivery rate, was retrospectively analyzed in a matched cohort of 120 patients.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

OBJECTIVE To evaluate treatment response of hepatocellular carcinoma (HCC) after transarterial chemoembolization (TACE) with a new real-time imaging fusion technique of contrast-enhanced ultrasound (CEUS) with multi-slice detection computed tomography (CT) in comparison to conventional post-interventional follow-up. MATERIAL AND METHODS 40 patients with HCC (26 male, ages 46-81 years) were evaluated 24 hours after TACE using CEUS with ultrasound volume navigation and image fusion with CT compared to non-enhanced CT and follow-up contrast-enhanced CT after 6-8 weeks. Reduction of tumor vascularization to less than 25% was regarded as "successful" treatment, whereas reduction to levels >25% was considered as "partial" treatment response. Homogenous lipiodol retention was regarded as successful treatment in non-enhanced CT. RESULTS Post-interventional image fusion of CEUS with CT was feasible in all 40 patients. In 24 patients (24/40), post-interventional image fusion with CEUS revealed residual tumor vascularity, that was confirmed by contrast-enhanced CT 6-8 weeks later in 24/24 patients. In 16 patients (16/40), post-interventional image fusion with CEUS demonstrated successful treatment, but follow-up CT detected residual viable tumor (6/16). Non-enhanced CT did not identify any case of treatment failure. Image fusion with CEUS assessed treatment efficacy with a specificity of 100%, sensitivity of 80% and a positive predictive value of 1 (negative predictive value 0.63). CONCLUSIONS Image fusion of CEUS with CT allows a reliable, highly specific post-interventional evaluation of embolization response with good sensitivity without any further radiation exposure. It can detect residual viable tumor at early state, resulting in a close patient monitoring or re-therapy.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Pencil beam scanned (PBS) proton therapy has many advantages over conventional radiotherapy, but its effectiveness for treating mobile tumours remains questionable. Gating dose delivery to the breathing pattern is a well-developed method in conventional radiotherapy for mitigating tumour-motion, but its clinical efficiency for PBS proton therapy is not yet well documented. In this study, the dosimetric benefits and the treatment efficiency of beam gating for PBS proton therapy has been comprehensively evaluated. A series of dedicated 4D dose calculations (4DDC) have been performed on 9 different 4DCT(MRI) liver data sets, which give realistic 4DCT extracting motion information from 4DMRI. The value of 4DCT(MRI) is its capability of providing not only patient geometries and deformable breathing characteristics, but also includes variations in the breathing patterns between breathing cycles. In order to monitor target motion and derive a gating signal, we simulate time-resolved beams' eye view (BEV) x-ray images as an online motion surrogate. 4DDCs have been performed using three amplitude-based gating window sizes (10/5/3 mm) with motion surrogates derived from either pre-implanted fiducial markers or the diaphragm. In addition, gating has also been simulated in combination with up to 19 times rescanning using either volumetric or layered approaches. The quality of the resulting 4DDC plans has been quantified in terms of the plan homogeneity index (HI), total treatment time and duty cycle. Results show that neither beam gating nor rescanning alone can fully retrieve the plan homogeneity of the static reference plan. Especially for variable breathing patterns, reductions of the effective duty cycle to as low as 10% have been observed with the smallest gating rescanning window (3 mm), implying that gating on its own for such cases would result in much longer treatment times. In addition, when rescanning is applied on its own, large differences between volumetric and layered rescanning have been observed as a function of increasing number of re-scans. However, once gating and rescanning is combined, HI to within 2% of the static plan could be achieved in the clinical target volume, with only moderately prolonged treatment times, irrespective of the rescanning strategy used. Moreover, these results are independent of the motion surrogate used. In conclusion, our results suggest image guided beam gating, combined with rescanning, is a feasible, effective and efficient motion mitigation approach for PBS-based liver tumour treatments.