128 resultados para Bone marrow-derived mononuclear cells (BMDMC)
Resumo:
OBJECTIVE: To examine the effects of infliximab on bone resorption by osteoclast precursor cells (OCPs) in patients with rheumatoid arthritis (RA) and ankylosing spondylitis (AS) and to compare the results with changes in disease activity. METHODS: Before and during 24 weeks of infliximab treatment peripheral blood mononuclear cells of 9 RA and 10 AS patients were seeded onto ivory wafers and adherent cells, including OCPs, were grown in medium promoting osteoclast differentiation. Bone resorption was evaluated morphometrically and correlated to disease activity. 19 healthy individuals were studied in parallel. In addition, biochemical bone markers were assessed in all patients at baseline and after 24 weeks. RESULTS: OCPs from RA patients showed a higher bone resorption at baseline when compared to AS patients. Blocking of TNFalpha with infliximab resulted in a strong reduction of bone resorption by OCPs in both cohorts and did occur faster in RA compared to AS patients. This inhibition coincided with reduction of clinical disease activity in both patient cohorts and with an increase of serum osteocalcin levels and a relative decrease of collagen crosslinks in RA compared to AS patients. CONCLUSION: These results provide an explanation on the cellular level for the anticatabolic effect of TNF neutralization on bone. The variation in the kinetics of bone resorption by the OCPs in patients with RA and AS suggests disease-specific differences in the type or in the preactivation of OCPs.
Resumo:
Activated lymphocytes and lymphoid-tissue inducer cells express lymphotoxins (LTs), which are essential for the organogenesis and maintenance of lymphoreticular microenvironments. Here we describe that T-cell-restricted overexpression of LT induces fulminant thymic involution. This phenotype was prevented by ablation of the LT receptors tumor necrosis factor receptor (TNFR) 1 or LT beta receptor (LTbetaR), representing two non-redundant pathways. Multiple lines of transgenic Ltalphabeta and Ltalpha mice show such a phenotype, which was not observed on overexpression of LTbeta alone. Reciprocal bone marrow transfers between LT-overexpressing and receptor-ablated mice show that involution was not due to a T cell-autonomous defect but was triggered by TNFR1 and LTbetaR signaling to radioresistant stromal cells. Thymic involution was partially prevented by the removal of one allele of LTbetaR but not of TNFR1, establishing a hierarchy in these signaling events. Infection with the lymphocytic choriomeningitis virus triggered a similar thymic pathology in wt, but not in Tnfr1(-/-) mice. These mice displayed elevated TNFalpha in both thymus and plasma, as well as increased LTs on both CD8(+) and CD4(-)CD8(-) thymocytes. These findings suggest that enhanced T cell-derived LT expression helps to control the physiological size of the thymic stroma and accelerates its involution via TNFR1/LTbetaR signaling in pathological conditions and possibly also in normal aging.
Resumo:
We describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines. Immunomodulatory properties were studied on activated peripheral blood mononuclear cells (PBMCs). The immuno-profile of fetal bone cells was further investigated at the gene expression level. Fetal bone cells and adult MSCs were positive for Stro-1, alkaline phosphatase, CD10, CD44, CD54, and beta2-microglobulin, but human leukocyte antigen (HLA)-I and CD80 were less present than on adult osteoblasts. All cells were negative for HLA-II. Treatment with recombinant human interferon gamma increased the presence of HLA-I in adult cells much more than in fetal cells. In the presence of activated PBMCs, fetal cells had antiproliferative effects, although with patterns not always comparable with those of adult MSCs and osteoblasts. Because of the immunological profile, and with their more-differentiated phenotype than of stem cells, fetal bone cells present an interesting potential for allogeneic cell source in tissue-engineering applications.
Resumo:
BACKGROUND: Current evidence suggests that endothelial progenitor cells (EPC) contribute to ischemic tissue repair by both secretion of paracrine factors and incorporation into developing vessels. We tested the hypothesis that cell-free administration of paracrine factors secreted by cultured EPC may achieve an angiogenic effect equivalent to cell therapy. METHODOLOGY/PRINCIPAL FINDINGS: EPC-derived conditioned medium (EPC-CM) was obtained from culture expanded EPC subjected to 72 hours of hypoxia. In vitro, EPC-CM significantly inhibited apoptosis of mature endothelial cells and promoted angiogenesis in a rat aortic ring assay. The therapeutic potential of EPC-CM as compared to EPC transplantation was evaluated in a rat model of chronic hindlimb ischemia. Serial intramuscular injections of EPC-CM and EPC both significantly increased hindlimb blood flow assessed by laser Doppler (81.2+/-2.9% and 83.7+/-3.0% vs. 53.5+/-2.4% of normal, P<0.01) and improved muscle performance. A significantly increased capillary density (1.62+/-0.03 and 1.68+/-0.05/muscle fiber, P<0.05), enhanced vascular maturation (8.6+/-0.3 and 8.1+/-0.4/HPF, P<0.05) and muscle viability corroborated the findings of improved hindlimb perfusion and muscle function. Furthermore, EPC-CM transplantation stimulated the mobilization of bone marrow (BM)-derived EPC compared to control (678.7+/-44.1 vs. 340.0+/-29.1 CD34(+)/CD45(-) cells/1x10(5) mononuclear cells, P<0.05) and their recruitment to the ischemic muscles (5.9+/-0.7 vs. 2.6+/-0.4 CD34(+) cells/HPF, P<0.001) 3 days after the last injection. CONCLUSIONS/SIGNIFICANCE: Intramuscular injection of EPC-CM is as effective as cell transplantation for promoting tissue revascularization and functional recovery. Owing to the technical and practical limitations of cell therapy, cell free conditioned media may represent a potent alternative for therapeutic angiogenesis in ischemic cardiovascular diseases.
Resumo:
The lack of effective therapies for end-stage lung disease validates the need for stem cell-based therapeutic approaches as alternative treatment options. In contrast with exogenous stem cell sources, the use of resident progenitor cells is advantageous considering the fact that the lung milieu is an ideal and familiar environment, thereby promoting the engraftment and differentiation of transplanted cells. Recent studies have shown the presence of multipotent 'mesenchymal stem cells' in the adult lung. The majority of these reports are, however, limited to animal models, and to date, there has been no report of a similar cell population in adult human lung parenchyma. Here, we show the identification of a population of primary human lung parenchyma (pHLP) mesenchymal stromal cells (MSCs) derived from intraoperative normal lung parenchyma biopsies. Surface and intracellular immunophenotyping by flow cytometry revealed that cultures do not contain alveolar type I epithelial cells or Clara cells, and are devoid of the following hematopoietic markers: CD34, CD45 and CXCR4. Cells show an expression pattern of surface antigens characteristic of MSCs, including CD73, CD166, CD105, CD90 and STRO-1. As per bone marrow MSCs, our pHLP cells have the ability to differentiate along the adipogenic, osteogenic and chondrogenic mesodermal lineages when cultured in the appropriate conditions. In addition, when placed in small airway growth media, pHLP cell cultures depict the expression of aquaporin 5 and Clara cell secretory protein, which is identified with that of alveolar type I epithelial cells and Clara cells, respectively, thereby exhibiting the capacity to potentially differentiate into airway epithelial cells. Further investigation of these resident cells may elucidate a therapeutic cell population capable of lung repair and/or regeneration.
Resumo:
BACKGROUND Several biologically plausible mechanisms have been proposed to mediate the association between periodontitis and atherosclerotic vascular disease (AVD), including adverse effects on vascular endothelial function. Circulating endothelial progenitor cells (cEPCs) are known to contribute to vascular repair, but limited data are available regarding the relationship between cEPC levels and periodontitis. The aims of this cross-sectional study are to investigate the levels of hemangioblastic and monocytic cEPCs in patients with periodontitis and periodontally healthy controls and to associate cEPC levels with the extent and severity of periodontitis. METHODS A total of 112 individuals (56 patients with periodontitis and 56 periodontally healthy controls, aged 26 to 65 years; mean age: 43 years) were enrolled. All participants underwent a full-mouth periodontal examination and provided a blood sample. Hemangioblastic cEPCs were assessed using flow cytometry, and monocytic cEPCs were identified using immunohistochemistry in cultured peripheral blood mononuclear cells. cEPC levels were analyzed in the entire sample, as well as in a subset of 50 pairs of patients with periodontitis/periodontally healthy controls, matched with respect to age, sex, and menstrual cycle. RESULTS Levels of hemangioblastic cEPCs were approximately 2.3-fold higher in patients with periodontitis than periodontally healthy controls, after adjustments for age, sex, physical activity, systolic blood pressure, and body mass index (P = 0.001). A non-significant trend for higher levels of monocytic cEPCs in periodontitis was also observed. The levels of hemangioblastic cEPCs were positively associated with the extent of bleeding on probing, probing depth, and clinical attachment loss. Hemangioblastic and monocytic cEPC levels were not correlated (Spearman correlation coefficient 0.03, P = 0.77), suggesting that they represent independent populations of progenitor cells. CONCLUSION These findings further support the notion that oral infections have extraoral effects and document that periodontitis is associated with a mobilization of EPCs from the bone marrow, apparently in response to systemic inflammation and endothelial injury.
Resumo:
Neutropenia is probably the strongest known predisposition to infection with otherwise harmless environmental or microbiota-derived species. Because initial swarming of neutrophils at the site of infection occurs within minutes, rather than the hours required to induce "emergency granulopoiesis," the relevance of having high numbers of these cells available at any one time is obvious. We observed that germ-free (GF) animals show delayed clearance of an apathogenic bacterium after systemic challenge. In this article, we show that the size of the bone marrow myeloid cell pool correlates strongly with the complexity of the intestinal microbiota. The effect of colonization can be recapitulated by transferring sterile heat-treated serum from colonized mice into GF wild-type mice. TLR signaling was essential for microbiota-driven myelopoiesis, as microbiota colonization or transferring serum from colonized animals had no effect in GF MyD88(-/-)TICAM1(-/-) mice. Amplification of myelopoiesis occurred in the absence of microbiota-specific IgG production. Thus, very low concentrations of microbial Ags and TLR ligands, well below the threshold required for induction of adaptive immunity, sets the bone marrow myeloid cell pool size. Coevolution of mammals with their microbiota has probably led to a reliance on microbiota-derived signals to provide tonic stimulation to the systemic innate immune system and to maintain vigilance to infection. This suggests that microbiota changes observed in dysbiosis, obesity, or antibiotic therapy may affect the cross talk between hematopoiesis and the microbiota, potentially exacerbating inflammatory or infectious states in the host.
Resumo:
Hematopoietic stem cells (HSCs) are rare, multipotent cells that generate via progenitor and precursor cells of all blood lineages. Similar to normal hematopoiesis, leukemia is also hierarchically organized and a subpopulation of leukemic cells, the leukemic stem cells (LSCs), is responsible for disease initiation and maintenance and gives rise to more differentiated malignant cells. Although genetically abnormal, LSCs share many characteristics with normal HSCs, including quiescence, multipotency and self-renewal. Normal HSCs reside in a specialized microenvironment in the bone marrow (BM), the so-called HSC niche that crucially regulates HSC survival and function. Many cell types including osteoblastic, perivascular, endothelial and mesenchymal cells contribute to the HSC niche. In addition, the BM functions as primary and secondary lymphoid organ and hosts various mature immune cell types, including T and B cells, dendritic cells and macrophages that contribute to the HSC niche. Signals derived from the HSC niche are necessary to regulate demand-adapted responses of HSCs and progenitor cells after BM stress or during infection. LSCs occupy similar niches and depend on signals from the BM microenvironment. However, in addition to the cell types that constitute the HSC niche during homeostasis, in leukemia the BM is infiltrated by activated leukemia-specific immune cells. Leukemic cells express different antigens that are able to activate CD4(+) and CD8(+) T cells. It is well documented that activated T cells can contribute to the control of leukemic cells and it was hoped that these cells may be able to target and eliminate the therapy-resistant LSCs. However, the actual interaction of leukemia-specific T cells with LSCs remains ill-defined. Paradoxically, many immune mechanisms that evolved to activate emergency hematopoiesis during infection may actually contribute to the expansion and differentiation of LSCs, promoting leukemia progression. In this review, we summarize mechanisms by which the immune system regulates HSCs and LSCs.