131 resultados para Blank
Resumo:
The isotope composition of selenium (Se) can provide important constraints on biological, geochemical, and cosmochemical processes taking place in different reservoirs on Earth and during planet formation. To provide precise qualitative and quantitative information on these processes, accurate and highly precise isotope data need to be obtained. The currently applied ICP-MS methods for Se isotope measurements are compromised by the necessity to perform a large number of interference corrections. Differences in these correction methods can lead to discrepancies in published Se isotope values of rock standards which are significantly higher than the acclaimed precision. An independent analytical approach applying a double spike (DS) and state-of-the-art TIMS may yield better precision due to its smaller number of interferences and could test the accuracy of data obtained by ICP-MS approaches. This study shows that the precision of Se isotope measurements performed with two different Thermo Scientific™ Triton™ Plus TIMS is distinctly deteriorated by about ±1‰ (2 s.d.) due to δ80/78Se by a memory Se signal of up to several millivolts and additional minor residual mass bias which could not be corrected for with the common isotope fractionation laws. This memory Se has a variable isotope composition with a DS fraction of up to 20% and accumulates with increasing number of measurements. Thus it represents an accumulation of Se from previous Se measurements with a potential addition from a sample or machine blank. Several cleaning techniques of the MS parts were tried to decrease the memory signal, but were not sufficient to perform precise Se isotope analysis. If these serious memory problems can be overcome in the future, the precision and accuracy of Se isotope analysis with TIMS should be significantly better than those of the current ICP-MS approaches.
Resumo:
People often make use of a spatial "mental time line" to represent events in time. We investigated whether the eyes follow such a mental time line during online language comprehension of sentences that refer to the past, present, and future. Participants' eye movements were measured on a blank screen while they listened to these sentences. Saccade direction revealed that the future is mapped higher up in space than the past. Moreover, fewer saccades were made when two events are simultaneously taking place at the present moment compared to two events that are happening in different points in time. This is the first evidence that oculomotor correlates reflect mental looking along an abstract invisible time line during online language comprehension about time. Our results support the idea that observing eye movements is likely to "detect" invisible spatial scaffoldings which are involved in cognitively processing abstract meaning, even when the abstract meaning lacks an explicit spatial correlate. Theoretical implications of these findings are discussed.
Resumo:
Spatial-numerical associations (small numbers-left/lower space and large numbers-right/upper space) are regularly found in simple number categorization tasks. These associations were taken as evidence for a spatially oriented mental number line. However, the role of spatial-numerical associations during more complex number processing, such as counting or mental arithmetic is less clear. Here, we investigated whether counting is associated with a movement along the mental number line. Participants counted aloud upward or downward in steps of 3 for 45 s while looking at a blank screen. Gaze position during upward counting shifted rightward and upward, while the pattern for downward counting was less clear. Our results, therefore, confirm the hypothesis of a movement along the mental number line for addition. We conclude that space is not only used to represent number magnitudes but also to actively operate on numbers in more complex tasks such as counting, and that the eyes reflect this spatial mental operation.
Resumo:
The diagnosis of neuroendocrine tumors is based on their histopathologic appearance and immunohistochemical profile. With the WHO 2010 classification formal staging and grading was introduced for gastro-entero-pancreatic NET, however, the nomenclature for lung neuroendocrine tumors still relies on the carcinoid term. In this review we also focus on the situation of neuroendocrine carcinoma of unknown primary, tissue biomarkers and actual controversies in the histopathology of NEN.