170 resultados para phosphorus deficiency
Resumo:
Confirmation of suspected congenital factor XIII (FXIII) deficiency still represents a diagnostic challenge in the field of rare bleeding disorders. Because of the lack of awareness and difficulties associated with timing of blood sampling, FXIII laboratory assays, and interpretation of laboratory results, diagnoses of FXIII deficiency are still missed all over the world with potentially fatal consequences from severe bleeding complications. Better knowledge of FXIII biochemical properties and function and understanding of the principles and limitations of FXIII laboratory assays can prevent missed diagnoses, and patients will benefit from better care. This review gives a detailed overview and update about congenital FXIII deficiency, its epidemiology, and molecular genetics. It highlights the importance of newer specific FXIII assays and their principles to avoid any missed diagnosis of FXIII deficiency. This review also gives an update on the therapeutic options for patients suffering from this rare but life-threatening disease.
Resumo:
A dietary energy restriction to 49% of total energy requirements was conducted with Red Holstein cows for three weeks in mid-lactation. At the last day of the restriction phase, primary bovine mammary epithelial cells (pbMEC) of eight restriction (RF) and seven control-fed (CF) cows were extracted out of one litre of milk and cultured. In their third passage, an immune challenge with the most prevalent, heat-inactivated mastitis pathogens Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was conducted. Lactoferrin (LF) was determined on gene expression and protein level. An enzyme-linked immunosorbent assay (ELISA) was developed to determine LF in milk samples taken twice weekly throughout the animal trial, beginning on day 20 pp (post-partum) until day 150 pp, in cell culture total protein and in cell culture supernatant. Milk LF increased throughout the lactation and decreased significantly during the induced energy deficiency in the RF group. At the beginning of realimentation, LF concentration increased immediately in the RF group and reached higher levels than before the induced deficit following the upward trend seen in the CF group. Cell culture data revealed higher levels (up to sevenfold up-regulation in gene expression) and significant higher LF protein concentration in the RF compared to the CF group cells. A further emphasized effect was found in E. coli compared to S. aureus exposed cells. The general elevated LF levels in the RF pbMEC group and the further increase owing to the immune challenge indicate an unexpected memory ability of milk-extracted mammary cells that were transposed into in vitro conditions and even displayed in the third passage of cultivation. The study confirms the suitability of the non-invasive milk-extracted pbMEC culture model to monitor the influence of feeding experiments on immunological situations in vivo.
Resumo:
Suboptimal dietary zinc (Zn(2+)) intake is increasingly appreciated as an important public health issue. Zn(2+) is an essential mineral, and infants are particularly vulnerable to Zn(2+) deficiency, as they require large amounts of Zn(2+) for their normal growth and development. Although term infants are born with an important hepatic Zn(2+) storage, adequate Zn(2+) nutrition of infants mostly depends on breast milk or formula feeding, which contains an adequate amount of Zn(2+) to meet the infants' requirements. An exclusively breast-fed 6 months old infant suffering from Zn(2+) deficiency caused by an autosomal dominant negative G87R mutation in the Slc30a2 gene (encoding for the zinc transporter 2 (ZnT-2)) in the mother is reported. More than 20 zinc transporters characterized up to date, classified into two families (Slc30a/ZnT and Slc39a/Zip), reflect the complexity and importance of maintaining cellular Zn(2+) homeostasis and dynamics. The role of ZnTs is to reduce intracellular Zn(2+) by transporting it from the cytoplasm into various intracellular organelles and by moving Zn(2+) into extracellular space. Zips increase intracellular Zn(2+) by transporting it in the opposite direction. Thus the coordinated action of both is essential for the maintenance of Zn(2+) homeostasis in the cytoplasm, and accumulating evidence suggests that this is also true for the secretory pathway of growth hormone.
Resumo:
GOALS The aim of this report is to delineate the clinical, pathologic, and enteroendocrine (EE) features of prohormone convertase 1/3 (PC1/3) deficiency in children. BACKGROUND Prohormone convertases play a pivotal role in the activation of biologically inactive hormones. Congenital defects in the EE axis, such as PC1/3 deficiency, have been rarely reported and their pathophysiological mechanisms are largely unknown. STUDY EE function and pathology was evaluated in 4 males (1, 2, 7, and 10 y old) from 2 families with PC1/3 deficiency at a university children's hospital. Clinical course, pathology analysis including immunohistochemistry for PC1/3, PC2, and glucagon-like peptide 1 (GLP-1) and electron microscopy, as well as EE function tests (GLP-1, GLP-2, oral glucose tolerance test) were performed. RESULTS All (n=4) suffered from congenital severe diarrhea associated with malabsorption. The diarrhea improved during the first year of life and hyperphagia with excessive weight gain (BMI>97th percentile) became the predominant phenotype at an older age. Analysis of the enteroendocrine axis revealed high proinsulin levels (57 to 1116 pmol/L) in all patients, low serum GLP-2 levels, and impaired insulin and GLP-1 secretion after an oral glucose tolerance test at a young age, with improvement in 1 older child tested. Electron microscopy showed normal ultrastructure of enterocytes and EE cells. Immunohistochemistry revealed normal expression of chromogranin A, a marker of EE cells but markedly reduced immunostaining for PC1/3 and PC2 in all patients. CONCLUSIONS PC1/3 deficiency is associated with an age dependent, variable clinical phenotype caused by severe abnormalities in intestinal and EE functions. Serum level of proinsulin can be used as an effective screening tool.
Resumo:
BACKGROUND & AIMS Proprotein convertase 1/3 (PC1/3) deficiency, an autosomal-recessive disorder caused by rare mutations in the proprotein convertase subtilisin/kexin type 1 (PCSK1) gene, has been associated with obesity, severe malabsorptive diarrhea, and certain endocrine abnormalities. Common variants in PCSK1 also have been associated with obesity in heterozygotes in several population-based studies. PC1/3 is an endoprotease that processes many prohormones expressed in endocrine and neuronal cells. We investigated clinical and molecular features of PC1/3 deficiency. METHODS We studied the clinical features of 13 children with PC1/3 deficiency and performed sequence analysis of PCSK1. We measured enzymatic activity of recombinant PC1/3 proteins. RESULTS We identified a pattern of endocrinopathies that develop in an age-dependent manner. Eight of the mutations had severe biochemical consequences in vitro. Neonates had severe malabsorptive diarrhea and failure to thrive, required prolonged parenteral nutrition support, and had high mortality. Additional endocrine abnormalities developed as the disease progressed, including diabetes insipidus, growth hormone deficiency, primary hypogonadism, adrenal insufficiency, and hypothyroidism. We identified growth hormone deficiency, central diabetes insipidus, and male hypogonadism as new features of PCSK1 insufficiency. Interestingly, despite early growth abnormalities, moderate obesity, associated with severe polyphagia, generally appears. CONCLUSIONS In a study of 13 children with PC1/3 deficiency caused by disruption of PCSK1, failure of enteroendocrine cells to produce functional hormones resulted in generalized malabsorption. These findings indicate that PC1/3 is involved in the processing of one or more enteric hormones that are required for nutrient absorption.
Resumo:
We identified a new point mutation in the CYP19 gene responsible for aromatase (P450arom) deficiency in a 46,XY male infant with unremarkable clinical findings at birth. This boy is homozygote for a 1-bp (C) deletion in exon 5 of the aromatase gene causing a frame-shift mutation. The frame-shift results in a prematurely terminated protein that is inactive due to the absence of the functional regions of the enzyme. Aromatase deficiency was suspected prenatally because of the severe virilization of the mother during the early pregnancy, and the diagnosis was confirmed shortly after birth. Four weeks after birth, the baby boy showed extremely low levels of serum estrogens, but had a normal level of serum free testosterone; in comparison with the high serum concentration of androstenedione at birth, a striking decrease occurred by 4 weeks postnatally. We previously reported elevated basal and stimulated FSH levels in a female infant with aromatase deficiency in the first year of life. In contrast, in the male infant, basal FSH and peak FSH levels after standard GnRH stimulation tests were normal. This finding suggests that the contribution of estrogen to the hypothalamic-pituitary gonadotropin-gonadal feedback mechanism is different in boys and girls during infancy and early childhood. In normal girls, serum estradiol concentrations strongly correlate with circulating inhibin levels, and thus, low inhibin levels may contribute to the striking elevation of FSH in young girls with aromatase deficiency. In contrast, estradiol levels are physiologically about a 7-fold lower in boys than in girls, and serum inhibin levels remain elevated even though levels of FSH, LH, and testosterone are decreased.
Resumo:
As pituitary function depends on the integrity of the hypothalamic-pituitary axis, any defect in the development and organogenesis of this gland may account for a form of combined pituitary hormone deficiency (CPHD). Although pit-1 was 1 of the first factors identified as a cause of CPHD in mice, many other homeodomain and transcription factors have been characterized as being involved in different developmental stages of pituitary gland development, such as prophet of pit-1 (prop-1), P-Lim, ETS-1, and Brn 4. The aims of the present study were first to screen families and patients suffering from different forms of CPHD for PROP1 gene alterations, and second to define possible hot spots and the frequency of the different gene alterations found. Of 73 subjects (36 families) analyzed, we found 35 patients, belonging to 18 unrelated families, with CPHD caused by a PROP1 gene defect. The PROP1 gene alterations included 3 missense mutations, 2 frameshift mutations, and 1 splice site mutation. The 2 reported frameshift mutations could be caused by any 2-bp GA or AG deletion at either the 148-GGA-GGG-153 or 295-CGA-GAG-AGT-303 position. As any combination of a GA or AG deletion yields the same sequencing data, the frameshift mutations were called 149delGA and 296delGA, respectively. All but 1 mutation were located in the PROP1 gene encoding the homeodomain. Importantly, 3 tandem repeats of the dinucleotides GA at location 296-302 in the PROP1 gene represent a hot spot for CPHD. In conclusion, the PROP1 gene seems to be a major candidate gene for CPHD; however, further studies are needed to evaluate other genetic defects involved in pituitary development.
Resumo:
As pituitary function depends on the integrity of the hypothalamic-pituitary axis, any defect in the development and organogenesis of this gland may account for a form of combined pituitary hormone deficiency (CPHD). A mutation in a novel, tissue-specific, paired-like homeodomain transcription factor, termed Prophet of Pit-1 (PROP1), has been identified as causing the Ames dwarf (df) mouse phenotype, and thereafter, different PROP1 gene alterations have been found in humans with CPHD. We report on the follow-up of two consanguineous families (n = 12), with five subjects affected with CPHD (three males and two females) caused by the same nucleotide C to T transition, resulting in the substitution of Arg-->Cys in PROP1 at codon 120. Importantly, there is a variability of phenotype, even among patients with the same mutation. The age at diagnosis was dependent on the severity of symptoms, ranging from 9 months to 8 yr. Although in one patient TSH deficiency was the first symptom of the disorder, all patients became symptomatic by exhibiting severe growth retardation and failure to thrive, which was mainly caused by GH deficiency (n = 4). The secretion of the pituitary-derived hormones (GH, PRL, TSH, LH, and FSH) declined gradually with age, following a different pattern in each individual; therefore, the deficiencies developed over a variable period of time. All of the subjects entered puberty spontaneously, and the two females also experienced menarche and periods before a replacement therapy was necessary.
Resumo:
Background: Approximately 20% of all colorectal cancers are hypothesized to arise from the "serrated pathway" characterized by mutation in BRAF, high-level CpG Island Methylator Phenotype, and microsatellite instability/mismatch repair (MMR)-deficiency. MMR-deficient cancers show frequent losses of Cdx2, a homeodomain transcription factor. Here, we determine the predictive value of Cdx2 expression for MMR-deficiency and investigate changes in expression between primary cancers and matched lymph node metastases. Methods: Immunohistochemistry for Cdx2, Mlh1, Msh2, Msh6, and Pms2 was performed on whole tissue sections from 201 patients with primary colorectal cancer and 59 cases of matched lymph node metastases. Receiver operating characteristic curve analysis and Area under the Curve (AUC) were investigated; association of Cdx2 with clinicopathological features and patient survival was carried out. Results: Loss of Cdx2 expression was associated with higher tumor grade (p = 0.0002), advanced pT (p = 0.0166), and perineural invasion (p = 0.0228). Cdx2 loss was an unfavorable prognostic factor in univariate (p = 0.0145) and multivariate [p = 0.0427; HR (95% CI): 0.58 (0.34-0.98)] analysis. The accuracy (AUC) for discriminating MMR-proficient and - deficient cancers was 87% [OR (95% CI): 0.96 (0.95-0.98); p < 0.0001]. Specificity and negative predictive value for MMR-deficiency was 99.1 and 96.3%. One hundred and seventy-four patients had MMR-proficient cancers, of which 60 (34.5%) showed Cdx2 loss. Cdx2 loss in metastases was related to MMR-deficiency (p < 0.0001). There was no difference in expression between primary tumors and matched metastases. Conclusion: Loss of Cdx2 is a sensitive and specific predictor of MMR-deficiency, but is not limited to these tumors, suggesting that events "upstream" of the development of microsatellite instability may impact Cdx2 expression.
Resumo:
Colorectal cancer is a heterogeneous disease at the histomorphological, clinical and molecular level. Approximately 20% of cases may progress through the "serrated" pathway characterized by BRAF mutation and high-level CpG Island Methylator Phenotype (CIMP). A large subgroup are additionally microsatellite instable (MSI) and demonstrate significant loss of tumor suppressor Cdx2. The aim of this study is to determine the specificity of Cdx2 protein expression and CpG promoter hypermethylation for BRAF(V600E) and high-level CIMP in colorectal cancer. Cdx2, Mlh1, Msh2, Msh6, and Pms2 were analyzed by immunohistochemistry using a multi-punch tissue microarray (TMA; n = 220 patients). KRAS and BRAF(V600E) mutation analysis, CDX2 methylation and CIMP were investigated. Loss of Cdx2 was correlated with larger tumor size (P = 0.0154), right-sided location (P = 0.0014), higher tumor grade (P < 0.0001), more advanced pT (P = 0.0234) and lymphatic invasion (P = 0.0351). Specificity was 100% for mismatch repair (MMR)-deficiency (P < 0.0001), 92.2% (P < 0.0001) for BRAF(V600E) and 91.8% for CIMP-high. Combined analysis of BRAF(V600E) /CIMP identified Cdx2 loss as sensitive (80%) and specific (91.5%) for mutation/high status. These results were validated on eight well-established colorectal cancer cell lines. CDX2 methylation correlated with BRAF(V600E) (P = 0.0184) and with Cdx2 protein loss (P = 0.0028). These results seem to indicate that Cdx2 may play a role in the serrated pathway to colorectal cancer as underlined by strong relationships with BRAF(V600E) , CIMP-high and MMR-deficiency. Whether this protein can only be used as a "surrogate" marker, or is functionally involved in the progression of these tumors remains to be elucidated.
Resumo:
We investigated the consequences of early malnutrition on milk production by dams and on body weight and structural lung growth of young rats using two models of protein restriction. Dams of the early restriction group were fed an 8% casein diet starting at parturition. Those of the delayed restriction group received a 12% casein diet from lactation d 8-14 and thereafter the 8% diet. After weaning, early restriction and delayed restriction group rats were maintained on low protein until d 49, then refed the control diet (18% casein) up to d 126. Milk was analyzed on d 12. Animals were killed at d 21, 49, and 126 for lung fixation in situ. In this report, we show that protein restriction lowered milk yield to 38% of normal. Milk lipid per gram of dry weight tended to be increased, whereas lactose and protein were significantly decreased. Pups from protein-restricted dams grew less and had lower lung volumes, effects being more serious at d 49. However, specific lung volumes (in milliliters per 100 g body weight) were constantly increased. This means that lung was either less affected than body mass or overdistended due to less connective tissue. After refeeding, both groups showed a remarkable catch-up in growth with restoration of the normal allometric relationship between lung volume and body weight. Thus, even after an early onset of protein restriction to total body, the lung is still capable to substantially recover from growth retardation.
Resumo:
Triggering receptor expressed on myeloid cells-1 (TREM-1) is a potent amplifier of pro-inflammatory innate immune reactions. While TREM-1-amplified responses likely aid an improved detection and elimination of pathogens, excessive production of cytokines and oxygen radicals can also severely harm the host. Studies addressing the pathogenic role of TREM-1 during endotoxin-induced shock or microbial sepsis have so far mostly relied on the administration of TREM-1 fusion proteins or peptides representing part of the extracellular domain of TREM-1. However, binding of these agents to the yet unidentified TREM-1 ligand could also impact signaling through alternative receptors. More importantly, controversial results have been obtained regarding the requirement of TREM-1 for microbial control. To unambiguously investigate the role of TREM-1 in homeostasis and disease, we have generated mice deficient in Trem1. Trem1(-/-) mice are viable, fertile and show no altered hematopoietic compartment. In CD4(+) T cell- and dextran sodium sulfate-induced models of colitis, Trem1(-/-) mice displayed significantly attenuated disease that was associated with reduced inflammatory infiltrates and diminished expression of pro-inflammatory cytokines. Trem1(-/-) mice also exhibited reduced neutrophilic infiltration and decreased lesion size upon infection with Leishmania major. Furthermore, reduced morbidity was observed for influenza virus-infected Trem1(-/-) mice. Importantly, while immune-associated pathologies were significantly reduced, Trem1(-/-) mice were equally capable of controlling infections with L. major, influenza virus, but also Legionella pneumophila as Trem1(+/+) controls. Our results not only demonstrate an unanticipated pathogenic impact of TREM-1 during a viral and parasitic infection, but also indicate that therapeutic blocking of TREM-1 in distinct inflammatory disorders holds considerable promise by blunting excessive inflammation while preserving the capacity for microbial control.
Resumo:
Effects of protein deficiency during the whole period of postnatal development and intensive growth were studied in the rat lung parenchyma. Dams received a low protein diet as follows: early restriction, 8% casein diet from parturition, and delayed restriction, 12% then 8% casein diet from lactation d 8. After weaning (d 21), early restriction and delayed restriction group rats were maintained on the 8% casein diet until d 49, wherefore they were returned to normal food (18% casein) for 11 wk. Lungs were processed for light and electron microscopic morphometry on d 21, 49, and 126. The diffusion capacity of the lung for O2 (DLO2) was also determined from the morphologic parameters. Volume and surface densities of the parenchymal components of malnourished rats did not consistently differ from controls. Because of lower lung volumes, absolute values, including DLO2, were all significantly decreased. Further, although lung volume growth was less impaired than body growth and thus deviated from the normal allometric relationship, most morphometric parameters paralleled body weight changes. Visually, we detected minor morphologic alterations at d 21 and 49, not necessarily reflected by morphometric data. But, importantly, lung parenchyma appeared mature at weaning despite the growth retardation. Normal refeeding resulted in a striking regrowth of the lung parenchyma. Although early restriction rats did not fully catch up in lung volume, most parenchymal parameters and DLO2 were largely restored in both refed groups.
Resumo:
BACKGROUND Thrombotic thrombocytopenic purpura (TTP) associated with severe, acquired ADAMTS13 deficiency is uncommonly reported in children. The incidence, demographic, and clinical features of these children, compared to adults, have not been described. PROCEDURES This study focused on children (<18 years old) and adults with TTP associated with severe, acquired ADAMTS13 deficiency, defined as activity <10%. The incidence rates for TTP in children and adults were calculated from patients enrolled in the Oklahoma TTP-HUS (Hemolytic-Uremic syndrome) Registry, 1996-2012. To describe demographic and clinical features, children with TTP were also identified from a systematic review of published reports and from samples sent to a reference laboratory for analysis of ADAMTS13. RESULTS The standardized annual incidence rate of TTP in children was 0.09 × 10(6) children per year, 3% of the incidence rate among adults (2.88 × 10(6) adults per year). Among the 79 children who were identified (one from the Oklahoma Registry, 55 from published reports, 23 from the reference laboratory), TTP appeared to be more common among females, similar to the relative increased frequency of women among adults with TTP, and more common in older children. Clinical data were available on 52 children; the frequency of severe renal failure, relapse, treatment with rituximab, and systemic lupus erythematosus in these children was similar to adults with TTP. CONCLUSIONS TTP associated with severe, acquired ADAMTS13 deficiency is uncommon in children. The demographic and clinical features of these children are similar to the features of adults with TTP.