154 resultados para mouse


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, mice were vaccinated intranasally with recombinant N. caninum protein disulphide isomerase (NcPDI) emulsified in cholera toxin (CT) or cholera toxin subunit B (CTB) from Vibrio cholerae. The effects of vaccination were assessed in the murine nonpregnant model and the foetal infection model, respectively. In the nonpregnant mice, previous results were confirmed, in that intranasal vaccination with recNcPDI in CT was highly protective, and low cerebral parasite loads were noted upon real-time PCR analysis. Protection was accompanied by an IgG1-biased anti-NcPDI response upon infection and significantly increased expression of Th2 (IL-4/IL-10) and IL-17 transcripts in spleen compared with corresponding values in mice treated with CT only. However, vaccination with recNcPDI in CT did not induce significant protection in dams and their offspring. In the dams, increased splenic Th1 (IFN-γ/IL-12) and Th17 mRNA expressions was detected. No protection was noted in the groups vaccinated with recNcPDI emulsified in CTB. Thus, vaccination with recNcPDI in CT in nonpregnant mice followed by challenge infection induced a protective Th2-biased immune response, while in the pregnant mouse model, the same vaccine formulation resulted in a Th1-biased inflammatory response and failed to protect dams and their progeny.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertical transmission from an infected cow to its fetus accounts for the vast majority of new Neospora caninum infections in cattle. A vaccine composed of a chimeric antigen named recNcMIC3-1-R, based on predicted immunogenic domains of the two microneme proteins NcMIC1 and NcMIC3, the rhoptry protein NcROP2, and emulsified in saponin adjuvants, significantly reduced the cerebral infection in non-pregnant BALB/c mice. Protection was associated with a mixed Th1/Th2-type cytokine response. However, the same vaccine formulation elicited a Th2-type immune response in pregnant mice and did not prevent vertical transmission or disease, neither in dams nor in offspring mice. In this study, an alternative vaccine formulation containing recNcMIC3-1-R emulsified in Freund’s incomplete adjuvant, a stimulator of the cellular immunity, was investigated. No protection against vertical transmission and cerebral infection in the pregnant mice and a very limited protective effect in the non-pregnant mice were observed. The vaccine induced a Th1-type immune response characterized by high IgG2a titres and strong IFN-γ expression, which appeared detrimental to pregnancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mucus clearance is an important airway innate defense mechanism. Airway-targeted overexpression of the epithelial Na(+) channel β-subunit [encoded by sodium channel nonvoltage gated 1, beta subunit (Scnn1b)] in mice [Scnn1b-transgenic (Tg) mice] increases transepithelial Na(+) absorption and dehydrates the airway surface, which produces key features of human obstructive lung diseases, including mucus obstruction, inflammation, and air-space enlargement. Because the first Scnn1b-Tg mice were generated on a mixed background, the impact of genetic background on disease phenotype in Scnn1b-Tg mice is unknown. To explore this issue, congenic Scnn1b-Tg mice strains were generated on C57BL/6N, C3H/HeN, BALB/cJ, and FVB/NJ backgrounds. All strains exhibited a two- to threefold increase in tracheal epithelial Na(+) absorption, and all developed airway mucus obstruction, inflammation, and air-space enlargement. However, there were striking differences in neonatal survival, ranging from 5 to 80% (FVB/NJmouse strains may be useful to identify key modifier genes and pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin and ultrathin cryosections of mouse cornea were labeled with affinity-purified antibodies directed against either laminin, its central segments (domain 1), the end of its long arm (domain 3), the end of one of its short arms (domain 4), nidogen, or low density heparan sulfate proteoglycan. All basement membrane proteins are detected by indirect immunofluorescence exclusively in the epithelial basement membrane, in Descemet's membrane, and in small amorphous plaques located in the stroma. Immunoelectron microscopy using the protein A-gold technique demonstrated laminin domain 1 and nidogen in a narrow segment of the lamina densa at the junction to the lamina lucida within the epithelial basement membrane. Domain 3 shows three preferred locations at both the cellular and stromal boundaries of the epithelial basement membrane and in its center. Domain 4 is located predominantly in the lamina lucida and the adjacent half of the lamina densa. The low density heparan sulfate proteoglycan is found all across the basement membrane showing a similar uniform distribution as with antibodies against the whole laminin molecule. In Descemet's membrane an even distribution was found with all these antibodies. It is concluded that within the epithelial basement membrane the center of the laminin molecule is located near the lamina densa/lamina lucida junction and that its long arm favors three major orientations. One is close to the cell surface indicating binding to a cell receptor, while the other two are directed to internal matrix structures. The apparent codistribution of laminin domain 1 and nidogen agrees with biochemical evidence that nidogen binds to this domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trichloroethylene (TCE)-induced liver toxicity and carcinogenesis is believed to be mediated in part by activation of the peroxisome proliferator-activated receptor α (PPARα). However, the contribution of the two TCE metabolites, dichloroacetate (DCA) and trichloroacetate (TCA) to the toxicity of TCE, remains unclear. The aim of the present study was to determine the metabolite profiles in serum and urine upon exposure of mice to TCE, to aid in determining the metabolic response to TCE exposure and the contribution of DCA and TCA to TCE toxicity. C57BL/6 mice were administered TCE, TCA, or DCA, and urine and serum subjected to ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS)-based global metabolomics analysis. The ions were identified through searching metabolomics databases and by comparison with authentic standards, and quantitated using multiple reactions monitoring. Quantitative polymerase chain reaction of mRNA, biochemical analysis, and liver histology were also performed. TCE exposure resulted in a decrease in urine of metabolites involved in fatty acid metabolism, resulting from altered expression of PPARα target genes. TCE treatment also induced altered phospholipid homeostasis in serum, as revealed by increased serum lysophosphatidylcholine 18:0 and 18:1, and phosphatidylcholine metabolites. TCA administration revealed similar metabolite profiles in urine and serum upon TCE exposure, which correlated with a more robust induction of PPARα target gene expression associated with TCA than DCA treatment. These data show the metabolic response to TCE exposure and demonstrate that TCA is the major contributor to TCE-induced metabolite alterations observed in urine and serum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human African trypanosomiasis is prevalent in Sub-sahara African countries that lie between 14° North and 29° south of the equator. Sixty million people are at risk of infection. Trypanosoma brucei gambesience occurs in West and Central Africa while Trypanosoma brucei rhodesience occurs in East and Southern Africa. The neurological stage of the disease is characterized by neuroinflammation. About 10% of patients treated with the recommended drug, melarsoprol develop post treatment reactive encephalopathy, which is fatal in 50% of these patients, thus melarsoprol is fatal in 5% of all treated patients. This study was aimed at establishing the potential activity of Erythrina abyssinica in reducing neuroinflammation following infection with Trypanosoma brucei brucei. Swiss white mice were divided into ten groups, two control groups and eight infected groups. Infected mice received either methanol or water extract of Erythrina abyssinica at 12.5, 25, 50 or 100 mg/kg body weight. Parasite counts were monitored in peripheral circulation from the third day post infection up to the end of the study. Brains were processed for histology, immunohistochemistry scanning and transmission electron microscopy. Following infection, trypanosomes were observed in circulation 3 days post-infection, with the parasitaemia occurring in waves. In the cerebrum, typical brain pathology of chronic trypanosomiasis was reproduced. This was exhibited as astrocytosis, perivascular cuffing and infiltration of inflammatory cells into the neuropil. However, mice treated with Erythrina abyssinica water extract exhibited significant reduction in perivascular cuffing, lymphocytic infiltration and astrocytosis in the cerebrum. The methanol extract did not have a significant difference compared to the non-treated group. This study provides evidence of anti-inflammatory properties of Erythrina abyssinica and may support its wide use as a medicinal plant by various communities in Kenya.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latrepirdine (Dimebon; dimebolin) is a neuroactive compound that was associated with enhanced cognition, neuroprotection and neurogenesis in laboratory animals, and has entered phase II clinical trials for both Alzheimer's disease and Huntington's disease (HD). Based on recent indications that latrepirdine protects cells against cytotoxicity associated with expression of aggregatable neurodegeneration-related proteins, including Aβ42 and γ-synuclein, we sought to determine whether latrepirdine offers protection to Saccharomyces cerevisiae. We utilized separate and parallel expression in yeast of several neurodegeneration-related proteins, including α-synuclein (α-syn), the amyotrophic lateral sclerosis-associated genes TDP43 and FUS, and the HD-associated protein huntingtin with a 103 copy-polyglutamine expansion (HTT gene; htt-103Q). Latrepirdine effects on α-syn clearance and toxicity were also measured following treatment of SH-SY5Y cells or chronic treatment of wild-type mice. Latrepirdine only protected yeast against the cytotoxicity associated with α-syn, and this appeared to occur via induction of autophagy. We further report that latrepirdine stimulated the degradation of α-syn in differentiated SH-SY5Y neurons, and in mouse brain following chronic administration, in parallel with elevation of the levels of markers of autophagic activity. Ongoing experiments will determine the utility of latrepirdine to abrogate α-syn accumulation in transgenic mouse models of α-syn neuropathology. We propose that latrepirdine may represent a novel scaffold for discovery of robust pro-autophagic/anti-neurodegeneration compounds, which might yield clinical benefit for synucleinopathies including Parkinson's disease, Lewy body dementia, rapid eye movement (REM) sleep disorder and/or multiple system atrophy, following optimization of its pro-autophagic and pro-neurogenic activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latrepirdine (Dimebon) is a pro-neurogenic, antihistaminic compound that has yielded mixed results in clinical trials of mild to moderate Alzheimer's disease, with a dramatically positive outcome in a Russian clinical trial that was unconfirmed in a replication trial in the United States. We sought to determine whether latrepirdine (LAT)-stimulated amyloid precursor protein (APP) catabolism is at least partially attributable to regulation of macroautophagy, a highly conserved protein catabolism pathway that is known to be impaired in brains of patients with Alzheimer's disease (AD). We utilized several mammalian cellular models to determine whether LAT regulates mammalian target of rapamycin (mTOR) and Atg5-dependent autophagy. Male TgCRND8 mice were chronically administered LAT prior to behavior analysis in the cued and contextual fear conditioning paradigm, as well as immunohistological and biochemical analysis of AD-related neuropathology. Treatment of cultured mammalian cells with LAT led to enhanced mTOR- and Atg5-dependent autophagy. Latrepirdine treatment of TgCRND8 transgenic mice was associated with improved learning behavior and with a reduction in accumulation of Aβ42 and α-synuclein. We conclude that LAT possesses pro-autophagic properties in addition to the previously reported pro-neurogenic properties, both of which are potentially relevant to the treatment and/or prevention of neurodegenerative diseases. We suggest that elucidation of the molecular mechanism(s) underlying LAT effects on neurogenesis, autophagy and behavior might warranty the further study of LAT as a potentially viable lead compound that might yield more consistent clinical benefit following the optimization of its pro-neurogenic, pro-autophagic and/or pro-cognitive activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spinal muscular atrophy (SMA) is a childhood fatal motor neuron disease caused by mutations in the Survival Motor Neuron 1 (SMN1) gene, currently without effective treatment. One possible therapeutic approach is the use of antisense oligonucleotides (ASOs) to redirect the splicing of a paralogous gene, SMN2, to increase the production of functional SMN protein. A range of ASOs with different chemical properties is suitable for these applications, including a morpholino (MO) variant, which has a particularly excellent safety, and efficacy profile. We used a 25- nt MO oligomer sequence against the ISS-N1 region of SMN2 (HSMN2Ex7D(-10-34)) with superior efficacy to previously described sequences also in transgenic SMA Δ7 mice. The combined local and systemic administration of MO (bare or conjugated to octa-guanidine) is necessary to increase full-length SMN expression, leading to robust neuropathological features improvement and survival rescue. Additionally, several snRNA levels that are dysregulated in SMA mice could be restored by MO treatment. These results demonstrate that MO therapy is efficacious and can result in phenotypic rescue. These data provide important insights for the development of therapeutic strategies in SMA patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-dependent refractoriness of calcium (Ca2+) release in cardiac myocytes is an important factor in determining whether pro-arrhythmic release patterns develop. At the subcellular level of the Ca2+ spark, recent studies have suggested that recovery of spark amplitude is controlled by local sarcoplasmic reticulum (SR) refilling whereas refractoriness of spark triggering depends on both refilling and the sensitivity of the ryanodine receptor (RyR) release channels that produce sparks. Here we studied regulation of Ca2+ spark refractoriness in mouse ventricular myocytes by examining how β-adrenergic stimulation influenced sequences of Ca2+ sparks originating from individual RyR clusters. Our protocol allowed us to separately measure recovery of spark amplitude and delays between successive sparks, and data were interpreted quantitatively through simulations with a stochastic mathematical model. We found that, compared with spark sequences measured under control conditions: (1) β-adrenergic stimulation with isoproterenol accelerated spark amplitude recovery and decreased spark-to-spark delays; (2) activating protein kinase A (PKA) with forskolin accelerated amplitude recovery but did not affect spark-to-spark delays; (3) inhibiting PKA with H89 retarded amplitude recovery and increased spark- to-spark delays; (4) preventing phosphorylation of the RyR at serine 2808 with a knock-in mouse prevented the decrease in spark-to-spark delays seen with β-adrenergic stimulation; (5) inhibiting either PKA or Ca2+/calmodulin-dependent protein kinase II (CaMKII) during β-adrenergic stimulation prevented the decrease in spark-to-spark delays seen) without inhibition. The results suggest that activation of either PKA or CaMKII is sufficient to speed SR refilling, but activation of both kinases appears necessary to observe increased RyR sensitivity. The data provide novel insight into β-adrenergic regulation of Ca2+ release refractoriness in mouse myocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular oxidative stress, associated with a variety of common cardiac diseases, is well recognized to affect the function of several key proteins involved in Ca2+ signaling and excitation-contraction coupling, which are known to be exquisitely sensitive to reactive oxygen species. These include the Ca2+ release channels of the sarcoplasmic reticulum (ryanodine receptors or RyR2s) and the Ca2+/calmodulin-dependent protein kinase II (CaMKII). Oxidation of RyR2s was found to increase the open probability of the channel, whereas CaMKII can be activated independent of Ca2+ through oxidation. Here, we investigated how oxidative stress affects RyR2 function and SR Ca2+ signaling in situ, by analyzing Ca2+ sparks in permeabilized mouse cardiomyocytes under a broad range of oxidative conditions. The results show that with increasing oxidative stress Ca2+ spark duration is prolonged. In addition, long and very long-lasting (up to hundreds of milliseconds) localized Ca2+ release events started to appear, eventually leading to sarcoplasmic reticulum (SR) Ca2+ depletion. These changes of release duration could be prevented by the CaMKII inhibitor KN93 and did not occur in mice lacking the CaMKII-specific S2814 phosphorylation site on RyR2. The appearance of long-lasting Ca2+ release events was paralleled by an increase of RyR2 oxidation, but also by RyR-S2814 phosphorylation, and by CaMKII oxidation. Our results suggest that in a strongly oxidative environment oxidation-dependent activation of CaMKII leads to RyR2 phosphorylation and thereby contributes to the massive prolongation of SR Ca2+ release events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatic angiosarcoma (AS) is a rare and highly aggressive tumor of endothelial origin with dismal prognosis. Studies of the molecular biology of AS and treatment options are limited as animal models are rare. We have previously shown that inducible knockout of Notch1 in mice leads to spontaneous formation of hepatic AS. The aims of this study were to: (1) establish and characterize a cell line derived from this murine AS, (2) identify molecular pathways involved in the pathogenesis and potential therapeutic targets, and (3) generate a tumor transplantation model. AS cells retained specific endothelial properties such as tube formation activity, as well as expression of CD31 and Von Willebrand factor. However, electron microscopy analysis revealed signs of dedifferentiation with loss of fenestrae and loss of contact inhibition. Microarray and pathway analysis showed substantial changes in gene expression and revealed activation of the Myc pathway. Exposing the AS cells to sorafenib reduced migration, filopodia dynamics, and cell proliferation but did not induce apoptosis. In addition, sorafenib suppressed ERK phosphorylation and expression of cyclin D2. Injection of AS cells into NOD/SCID mice resulted in formation of undifferentiated tumors, confirming the tumorigenic potential of these cells. In summary, we established and characterized a murine model of spontaneous AS formation and hepatic AS cell lines as a useful in vitro tool. Our data demonstrate antitumor activity of sorafenib in AS cells with potent inhibition of migration, filopodia formation, and cell proliferation, supporting further evaluation of sorafenib as a novel treatment strategy. In addition, AS cell transplantation provides a subcutaneous tumor model useful for in vivo preclinical drug testing.Laboratory Investigation advance online publication, 24 November 2014; doi:10.1038/labinvest.2014.141.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations of STAT3 underlie the autosomal dominant form of hyperimmunoglobulin E syndrome (HIES). STAT3 has critical roles in immune cells and thus, hematopoietic stem cell transplantation (HSCT), might be a reasonable therapeutic strategy in this disease. However, STAT3 also has critical functions in nonhematopoietic cells and dissecting the protean roles of STAT3 is limited by the lethality associated with germline deletion of Stat3. Thus, predicting the efficacy of HSCT for HIES is difficult. To begin to dissect the importance of STAT3 in hematopoietic and nonhematopoietic cells as it relates to HIES, we generated a mouse model of this disease. We found that these transgenic mice recapitulate multiple aspects of HIES, including elevated serum IgE and failure to generate Th17 cells. We found that these mice were susceptible to bacterial infection that was partially corrected by HSCT using wild-type bone marrow, emphasizing the role played by the epithelium in the pathophysiology of HIES.