109 resultados para land-use patterns
Resumo:
Land degradation is intrinsically complex and involves decisions by many agencies and individuals, land degradation map- ping should be used as a learning tool through which managers, experts and stakeholders can re-examine their views within a wider semantic context. In this paper, we introduce an analytical framework for mapping land degradation, developed by World Overview for Conservation Approaches and technologies (WOCAT) programs, which aims to develop some thematic maps that serve as an useful tool and including effective information on land degradation and conservation status. Consequently, this methodology would provide an important background for decision-making in order to launch rehabilitation/remediation actions in high-priority intervention areas. As land degradation mapping is a problem-solving task that aims to provide clear information, this study entails the implementation of WOCAT mapping tool, which integrate a set of indicators to appraise the severity of land degradation across a representative watershed. So this work focuses on the use of the most relevant indicators for measuring impacts of different degradation processes in El Mkhachbiya catchment, situated in Northwest of Tunisia and those actions taken to deal with them based on the analysis of operating modes and issues of degradation in different land use systems. This study aims to provide a database for surveillance and monitoring of land degradation, in order to support stakeholders in making appropriate choices and judge guidelines and possible suitable recommendations to remedy the situation in order to promote sustainable development. The approach is illustrated through a case study of an urban watershed in Northwest of Tunisia. Results showed that the main land degradation drivers in the study area were related to natural processes, which were exacerbated by human activities. So the output of this analytical framework enabled a better communication of land degradation issues and concerns in a way relevant for policymakers.
Resumo:
Soils provide us with over 90% of all human food, livestock feed, fibre and fuel on Earth. Soils, however, have more than just productive functions. The key challenge in coming years will be to address the diverse and potentially conflicting demands now being made by human societies and other forms of life, while ensuring that future generations have the same potential to use soils and land of comparable quality. In a multi-level stakeholder approach, down-to-earth action will have to be supplemented with measures at various levels, from households to communities, and from national policies to international conventions. Knowledge systems, both indigenous and scientific, and related research and learning processes must play a central role. Ongoing action can be enhanced through a critical assessment of the impact of past achievements, and through better cooperation between people and institutions.
Resumo:
Although analyses of large-scale land acquisitions (LSLA) often contain an explicit or implicit normative judgment about such projects, they rarely deduce such judgment from a nuanced balancing of pros and cons. This paper uses assessments about a well-researched LSLA in Sierra Leone to show that a utilitarian approach tends to lead to the conclusion that positive effects prevail, whereas deontological approaches lead to an emphasis on negative aspects. LSLA are probably the most radical land-use change in the history of humankind. This process of radical transformation poses a challenge for balanced evaluations. Thus, we line out a framework that focuses on the options of local residents but sets boundaries of acceptability through the core contents of human rights. In addition, systemic implications of a project need to be regarded.
Resumo:
Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ13C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier 13C due to closing stomata leading to an enrichment of 13C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ13C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ13C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ13C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future climate change.