122 resultados para growth hormone gene


Relevância:

40.00% 40.00%

Publicador:

Resumo:

FGFRL1 is a novel member of the fibroblast growth factor receptor family that controls the formation of musculoskeletal tissues. Some vertebrates, including man, cow, dog, mouse, rat and chicken, possess a single copy the FGFRL1 gene. Teleostean fish have two copies, fgfrl1a and fgfrl1b, because they have undergone a whole genome duplication. Vertebrates belong to the chordates, a phylum that also includes the subphyla of the cephalochordates (e.g. Branchiostoma floridae) and urochordates (tunicates, e.g. Ciona intestinalis). We therefore investigated whether other chordates might also possess an FGFRL1 related gene. In fact, a homologous gene was found in B. floridae (amphioxus). The corresponding protein showed 60% sequence identity with the human protein and all sequence motifs identified in the vertebrate proteins were also conserved in amphioxus Fgfrl1. In contrast, the genome of the urochordate C. intestinalis and those from more distantly related invertebrates including the insect Drosophila melanogaster and the nematode Caenorhabditis elegans did not appear to contain any related sequences. Thus, the FGFRL1 gene might have evolved just before branching of the vertebrate lineage from the other chordates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study aimed to search for and characterize parasite molecules, whose expression levels correlate with the viability and growth activity of Echinococcus multilocularis metacestodes. We focused on the expression profiles of 2 parasite-derived genes, 14-3-3 and II/3-10, as putative molecular markers for viability and growth activity of the larval parasite. In experiments in vivo, gene expression levels of 14-3-3 and II/3-10 were relatively quantified by real-time reverse transcription-PCR using a housekeeping gene, beta-actin, as a reference reaction. All three reactions were compared with growth activity of the parasite developing in permissive nu/nu and in non-permissive wild type BALB/c mice. At 2 months p.i., the transcription level of 14-3-3 was significantly higher in parasites actively proliferating in nu/nu mice compared to parasites moderately growing in wild type mice. Immunoblotting experiments confirmed at the protein level that 14-3-3 was over-expressed in parasites derived from nu/nu mice at 2 months p.i. In vitro treatment of E. multilocularis with an anti-echinococcal drug nitazoxanide resulted in a significant decrease of both 14-3-3 and II/3-10 transcription levels found after 8 days of treatment, which correlated with the kinetics of a housekeeping gene, beta-actin. The conclusion is that 14-3-3, combined with II/3-10, exhibits good potential as a molecular marker to assess viability and growth activity of the parasite.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abnormal alveolar wound repair contributes to the development of pulmonary fibrosis after lung injury. Hepatocyte growth factor (HGF) is a potent mitogenic factor for alveolar epithelial cells and may therefore improve alveolar epithelial repair in vitro and in vivo. We hypothesized that HGF could increase alveolar epithelial repair in vitro and improve pulmonary fibrosis in vivo. Alveolar wound repair in vitro was determined using an epithelial wound repair model with HGF-transfected A549 alveolar epithelial cells. Electroporation-mediated, nonviral gene transfer of HGF in vivo was performed 7 days after bleomycin-induced lung injury in the rat. Alveolar epithelial repair in vitro was increased after transfection of wounded epithelial monolayers with a plasmid encoding human HGF, pCikhHGF [human HGF (hHGF) gene expressed from the cytomegalovirus (CMV) immediate-early promoter and enhancer] compared with medium control. Electroporation-mediated in vivo HGF gene transfer using pCikhHGF 7 days after intratracheal bleomycin reduced pulmonary fibrosis as assessed by histology and hydroxyproline determination 14 days after bleomycin compared with controls treated with the same vector not containing the HGF sequence (pCik). Lung epithelial cell proliferation was increased and apoptosis reduced in hHGF-treated lungs compared with controls, suggesting increased alveolar epithelial repair in vivo. In addition, profibrotic transforming growth factor-beta1 (TGF-beta1) was decreased in hHGF-treated lungs, indicating an involvement of TGF-beta1 in hHGF-induced reduction of lung fibrosis. In conclusion, electroporation-mediated gene transfer of hHGF decreases bleomycin-induced pulmonary fibrosis, possibly by increasing alveolar epithelial cell proliferation and reducing apoptosis, resulting in improved alveolar wound repair.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Mutations in the chloride channel gene, CLCNKB, usually cause classic Bartter syndrome (cBS) or a mixed Bartter-Gitelman phenotype in the first years of life. METHODS: We report an adult woman with atypical BS caused by a homozygous missense mutation, A204T, in the CLCNKB gene, which has previously been described as the apparently unique cause of cBS in Spain. RESULTS: The evaluation of this patient revealed an overlap of phenotypic features ranging from severe biochemical and systemic disturbances typical of cBS to scarce symptoms and diagnosis in the adult age typical of Gitelman syndrome. The tubular disease caused a dramatic effect on mental, growth and puberal development leading to low IQ, final short stature and abnormal ovarian function. Furthermore, low serum PTH concentrations with concomitant nephrocalcinosis and normocalcaemia were observed. Both ovarian function and serum PTH levels were normalized after treatment with cyclooxygenase inhibitors. CONCLUSIONS: The present report confirms a weak genotype-phenotype correlation in patients with CLCNKB mutations and supports the founder effect of the A204T mutation in Spain. In our country, the genetic diagnosis of adult patients with hereditary hypokalaemic tubulopathies should include a screening of A204T mutation in the CLCNKB gene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The physical localization of the epidermal growth factor receptor (EGFR) gene was performed on donkey chromosomes. Bacterial artificial chromosome DNA containing the equine EGFR gene was used to map this gene by fluorescent in situ hybridization on donkey metaphase chromosomes. The gene was mapped on donkey 1q21.1 region.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: Insulin-like growth factor-I (IGF-I) is critically involved in the control of cartilage matrix metabolism. It is well known that IGF-binding protein-3 (IGFBP-3) is increased during osteoarthritis (OA), but its function(s) is not known. In other cells, IGFBP-3 can regulate IGF-I action in the extracellular environment and can also act independently inside the cell; this includes transcriptional gene control in the nucleus. These studies were undertaken to localize IGFBP-3 in human articular cartilage, particularly within cells. DESIGN: Cartilage was dissected from human femoral heads derived from arthroplasty for OA, and OA grade assessed by histology. Tissue slices were further characterized by extraction and assay of IGFBPs by IGF ligand blot (LB) and by enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry (IHC) for IGF-I and IGFBP-3 was performed on cartilage from donors with mild, moderate and severe OA. Indirect fluorescence and immunogold-labeling IHC studies were included. RESULTS: LBs of chondrocyte lysates showed a strong signal for IGFBP-3. IHC of femoral cartilage sections at all OA stages showed IGF-I and IGFBP-3 matrix stain particularly in the top zones, and closely associated with most cells. A prominent perinuclear/nuclear IGFBP-3 signal was seen. Controls using non-immune sera or antigen-blocked antibody showed negative or strongly reduced stain. In frozen sections of human ankle cartilage, immunofluorescent IGFBP-3 stain co-localized with the nuclear 4',6-diamidino-2-phenyl indole (DAPI) stain in greater than 90% of the cells. Immunogold IHC of thin sections and transmission electron immunogold microscopy of ultra-thin sections showed distinct intra-nuclear staining. CONCLUSIONS: IGFBP-3 in human cartilage is located in the matrix and within chondrocytes in the cytoplasm and nuclei. This new finding indicates that the range of IGFBP-3 actions in articular cartilage is likely to include IGF-independent roles and opens the door to studies of its nuclear actions, including the possible regulation of hormone receptors or transcriptional complexes to control gene action.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intervertebral disc (IVD) cell therapy with unconditioned 2D expanded mesenchymal stem cells (MSC) is a promising concept yet challenging to realize. Differentiation of MSCs by nonviral gene delivery of growth and differentiation factor 5 (GDF5) by electroporation mediated gene transfer could be an excellent source for cell transplantation. Human MSCs were harvested from bone marrow aspirate and GDF5 gene transfer was achieved by in vitro electroporation. Transfected cells were cultured as monolayers and as 3D cultures in 1.2% alginate bead culture. MSC expressed GDF5 efficiently for up to 21 days. The combination of GDF5 gene transfer and 3D culture in alginate showed an upregulation of aggrecan and SOX9, two markers for chondrogenesis, and KRT19 as a marker for discogenesis compared to untransfected cells. The cells encapsulated in alginate produced more proteoglycans expressed in GAG/DNA ratio. Furthermore, GDF5 transfected MCS injected into an IVD papain degeneration organ culture model showed a partial recovery of the GAG/DNA ratio after 7 days. In this study we demonstrate the potential of GDF5 transfected MSC as a promising approach for clinical translation for disc regeneration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Inefficient alveolar wound repair contributes to the development of pulmonary fibrosis. Hepatocyte growth factor (HGF) is a potent growth factor for alveolar type II epithelial cells (AECII) and may improve repair and reduce fibrosis. We studied whether targeted gene transfer of HGF specifically to AECII improves lung fibrosis in bleomycin-induced lung fibrosis. A plasmid encoding human HGF expressed from the human surfactant protein C promoter (pSpC-hHGF) was designed, and extracorporeal electroporation-mediated gene transfer of HGF specifically to AECII was performed 7 days after bleomycin-induced lung injury in the rat. Animals were killed 7 days after hHGF gene transfer. Electroporation-mediated HGF gene transfer resulted in HGF expression specifically in AECII at biologically relevant levels. HGF gene transfer reduced pulmonary fibrosis as assessed by histology, hydroxyproline determination, and design-based stereology compared with controls. Our results indicate that the antifibrotic effect of HGF is due in part to a reduction of transforming growth factor-β(1), modulation of the epithelial-mesenchymal transition, and reduction of extravascular fibrin deposition. We conclude that targeted HGF gene transfer specifically to AECII decreases bleomycin-induced lung fibrosis and may therefore represent a novel cell-specific gene transfer technology to treat pulmonary fibrosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As pituitary function depends on the integrity of the hypothalamic-pituitary axis, any defect in the development and organogenesis of this gland may account for a form of combined pituitary hormone deficiency (CPHD). Although pit-1 was 1 of the first factors identified as a cause of CPHD in mice, many other homeodomain and transcription factors have been characterized as being involved in different developmental stages of pituitary gland development, such as prophet of pit-1 (prop-1), P-Lim, ETS-1, and Brn 4. The aims of the present study were first to screen families and patients suffering from different forms of CPHD for PROP1 gene alterations, and second to define possible hot spots and the frequency of the different gene alterations found. Of 73 subjects (36 families) analyzed, we found 35 patients, belonging to 18 unrelated families, with CPHD caused by a PROP1 gene defect. The PROP1 gene alterations included 3 missense mutations, 2 frameshift mutations, and 1 splice site mutation. The 2 reported frameshift mutations could be caused by any 2-bp GA or AG deletion at either the 148-GGA-GGG-153 or 295-CGA-GAG-AGT-303 position. As any combination of a GA or AG deletion yields the same sequencing data, the frameshift mutations were called 149delGA and 296delGA, respectively. All but 1 mutation were located in the PROP1 gene encoding the homeodomain. Importantly, 3 tandem repeats of the dinucleotides GA at location 296-302 in the PROP1 gene represent a hot spot for CPHD. In conclusion, the PROP1 gene seems to be a major candidate gene for CPHD; however, further studies are needed to evaluate other genetic defects involved in pituitary development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Patients with advanced prostate cancer (PC) are usually treated with androgen withdrawal. While this therapy is initially effective, nearly all PCs become refractory to it. As hormone receptors play a crucial role in this process, we constructed a tissue microarray consisting of PC samples from 107 hormone-naïve (HN) and 101 castration-resistant (CR) PC patients and analyzed the androgen receptor (AR) gene copy number and the protein expression profiles of AR, Serin210-phosphorylated AR (pAR(210)), estrogen receptor (ER)β, ERα and the proliferation marker Ki67. The amplification of the AR gene was virtually restricted to CR PC and was significantly associated with increased AR protein expression (P<0.0001) and higher tumor cell proliferation (P=0.001). Strong AR expression was observed in a subgroup of HN PC patients with an adverse prognosis. In contrast, the absence of AR expression in CR PC was significantly associated with a poor overall survival. While pAR(210) was predominantly found in CR PC patients (P<0.0001), pAR(210) positivity was observed in a subgroup of HN PC patients with a poor survival (P<0.05). Epithelial ERα expression was restricted to CR PC cells (9%). ERβ protein expression was found in 38% of both HN and CR PCs, but was elevated in matched CR PC specimens. Similar to pAR(210), the presence of ERβ in HN patients was significantly associated with an adverse prognosis (P<0.005). Our results strongly suggest a major role for pAR(210) and ERβ in HN PC. The expression of these markers might be directly involved in CR tumor growth.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Morphogenesis occurs in 3D space over time and is guided by coordinated gene expression programs. Here we use postembryonic development in Arabidopsis plants to investigate the genetic control of growth. We demonstrate that gene expression driving the production of the growth-stimulating hormone gibberellic acid and downstream growth factors is first induced within the radicle tip of the embryo. The center of cell expansion is, however, spatially displaced from the center of gene expression. Because the rapidly growing cells have very different geometry from that of those at the tip, we hypothesized that mechanical factors may contribute to this growth displacement. To this end we developed 3D finite-element method models of growing custom-designed digital embryos at cellular resolution. We used this framework to conceptualize how cell size, shape, and topology influence tissue growth and to explore the interplay of geometrical and genetic inputs into growth distribution. Our simulations showed that mechanical constraints are sufficient to explain the disconnect between the experimentally observed spatiotemporal patterns of gene expression and early postembryonic growth. The center of cell expansion is the position where genetic and mechanical facilitators of growth converge. We have thus uncovered a mechanism whereby 3D cellular geometry helps direct where genetically specified growth takes place.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: The understanding of molecular mechanisms leading to poor prognosis in pancreatic cancer may help develop treatment options. N-myc downstream-regulated gene-1 (NDRG1) has been correlated to better prognosis in pancreatic cancer. Therefore, we thought to analyze how the loss of NDRG1 affects progression in an orthotopic xenograft animal model of recurrence. METHODS: Capan-1 cells were silenced for NDRG1 (C(sil)) or transfected with scrambled shRNA (C(scr)) and compared for anchorage-dependent and anchorage-independent growth, invasion and tube formation in vitro. In an orthotopic xenograft model of recurrence tumors were grown in the pancreatic tail. The effect of NDRG1 silencing was evaluated on tumor size and metastasis. RESULTS: The silencing of NDRG1 in Capan-1 cells leads to more aggressive tumor growth and metastasis. We found faster cell growth, double count of invaded cells and 1.8-fold increase in tube formation in vitro. In vivo local tumors were 5.9-fold larger (p = 0.006) and the number of metastases was higher in animals with tumors silenced for NDRG1 primarily (3 vs. 1.1; p = 0.005) and at recurrence (3.3 vs. 0.9; p = 0.015). CONCLUSION: NDRG1 may be an interesting therapeutic target as its silencing in human pancreatic cancer cells leads to a phenotype with more aggressive tumor growth and metastasis.