135 resultados para growth hormone deficiency


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Prenatal glucocorticoid (GC) treatment of the female fetus with 21-hydroxylase deficiency (21-OHD) may prevent genital virilization and androgen effects on the brain, but prenatal GC therapy is controversial because of possible adverse effects on fetal programming, the cardiovascular system and the brain. Case Reports: We report 2 patients with congenital adrenal hyperplasia (CAH) due to 21-OHD who were treated prenatally with dexamethasone, suffered from an acute encephalopathy and showed focal and multifocal cortical and subcortical diffusion restrictions in early MRI and signs of permanent alterations in the follow-up neuroimaging studies. Both patients recovered from the acute episode. Whereas the first patient recovered without neurological sequelae the second patient showed hemianopsia and spastic hemiplegia in the neurological follow-up examination. Conclusion: These are 2 children with CAH, both treated prenatally with high doses of dexamethasone to prevent virilization. The question arises whether prenatal high-dose GC treatment in patients with CAH might represent a risk factor for brain lesions in later life. Adverse effects/events should be reported systematically in patients undergoing prenatal GC treatment and long-term follow-up studies involving risk factors for cerebrovascular disease should be performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hormone sensitive lipase (HSL) regulates the hydrolysis of acylglycerols and cholesteryl esters (CE) in various cells and organs, including enterocytes of the small intestine. The physiological role of this enzyme in enterocytes, however, stayed elusive. In the present study we generated mice lacking HSL exclusively in the small intestine (HSLiKO) to investigate the impact of HSL deficiency on intestinal lipid metabolism and the consequences on whole body lipid homeostasis. Chow diet-fed HSLiKO mice showed unchanged plasma lipid concentrations. In addition, feeding with high fat/high cholesterol (HF/HC) diet led to unaltered triglyceride but increased plasma cholesterol concentrations and CE accumulation in the small intestine. The same effect was observed after an acute cholesterol load. Gavaging of radioactively labeled cholesterol resulted in increased abundance of radioactivity in plasma, liver and small intestine of HSLiKO mice 4h post-gavaging. However, cholesterol absorption determined by the fecal dual-isotope ratio method revealed no significant difference, suggesting that HSLiKO mice take up the same amount of cholesterol but in an accelerated manner. mRNA expression levels of genes involved in intestinal cholesterol transport and esterification were unchanged but we observed downregulation of HMG-CoA reductase and synthase and consequently less intestinal cholesterol biosynthesis. Taken together our study demonstrates that the lack of intestinal HSL leads to CE accumulation in the small intestine, accelerated cholesterol absorption and decreased cholesterol biosynthesis, indicating that HSL plays an important role in intestinal cholesterol homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aldosterone levels are markedly elevated during normal pregnancy but fall even though volume contracts when preeclampsia occurs. The level of aldosterone in either condition cannot be explained solely by the activity of the renin-angiotensin II system. In normal gestation, vascular endothelial growth factor (VEGF) is thought to maintain vascular health, but its role in adrenal hormone production is unknown. We hypothesized that the role of VEGF in the adrenal gland is to maintain vascular health and regulate aldosterone production. Here, we demonstrate that supernatant of endothelial cells grown in the presence of VEGF enhanced aldosterone synthase activity in human adrenocortical cells. VEGF either alone or combined with angiotensin II increased aldosterone production in adrenal cells. These data suggest that endothelial cell-dependent and independent activation of aldosterone is regulated by VEGF. In contrast to angiotensin II, VEGF did not upregulate the steroidogenic acute regulatory protein. Consistent with this observation, angiotensin II stimulated both aldosterone and cortisol synthesis from progesterone, whereas VEGF stimulated selectively aldosterone production. In rats, overexpression of soluble fms-like tyrosine kinase-1, an endogenous VEGF inhibitor, led to adrenocortical capillary rarefaction and fall in aldosterone concentrations that correlated inversely with soluble fms-like tyrosine kinase-1 levels. These findings may explain why aldosterone increases so markedly during normal gestation and why preeclampsia, a condition characterized by high soluble fms-like tyrosine kinase-1, is associated with inappropriately low aldosterone levels in spite of relatively lower plasma volumes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: P450 oxidoreductase deficiency--a newly described form of congenital adrenal hyperplasia--typically presents a steroid profile suggesting combined deficiencies of steroid 21-hydroxylase and 17alpha-hydroxylase/17,20-lyase activities. These and other enzymes require electron donation from P450 oxidoreductase. The clinical spectrum of P450 oxidoreductase deficiency ranges from severely affected children with ambiguous genitalia, adrenal insufficiency and the Antley-Bixler skeletal malformation syndrome to mildly affected individuals with polycystic ovary syndrome. We review current knowledge of P450 oxidoreductase deficiency and its broader implications. RECENT FINDINGS: Since the first report in 2004, at least 21 P450 oxidoreductase mutations have been reported in over 40 patients. The often subtle manifestations of P450 oxidoreductase deficiency suggest it may be relatively common. P450 oxidoreductase deficiency, with or without Antley-Bixler syndrome, is autosomal recessive, whereas Antley-Bixler syndrome without disordered steroidogenesis is caused by autosomal dominant fibroblast growth factor receptor 2 mutations. In-vitro assays of P450 oxidoreductase missense mutations based on P450 oxidoreductase-supported P450c17 activities provide excellent genotype/phenotype correlations. The causal connection between P450 oxidoreductase deficiency and disordered bone formation remains unclear. SUMMARY: P450 oxidoreductase mutations cause combined partial deficiency of 17alpha-hydroxylase and 21-hydroxylase. Individuals with an Antley-Bixler syndrome-like phenotype presenting with sexual ambiguity or other abnormalities in steroidogenesis should be analyzed for P450 oxidoreductase deficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Prostate cancer is the most common type of cancer in men, however, therapeutic options are limited. 50-90% of hormone-refractory prostate cancer cells show an overexpression of epidermal growth factor receptor (EGFR), which may contribute to uncontrolled proliferation and resistance to chemotherapy. In vitro, gefitinib, an orally administered tyrosine kinase inhibitor, has shown a significant increase in antitumor activity when combined with chemotherapy. PATIENTS AND METHODS: In this phase II study, the safety and efficacy of gefitinib in combination with docetaxel, a chemotherapeutic agent commonly used for prostate cancer, was investigated in patients with hormone-refractory prostate cancer (HRPC). 37 patients with HRPC were treated continuously with gefitinib 250 mg once daily and docetaxel 35 mg/m2 i.v. for up to 6 cycles. PSA response, defined as a =50% decrease in serum PSA compared with trial entry, was the primary efficacy parameter. PSA levels were measured at prescribed intervals. RESULTS: The response rate and duration of response were consistent with those seen with docetaxel monotherapy. The combination of docetaxel and gefitinib was reasonably well tolerated in this study. CONCLUSION: Future studies should investigate whether patients with specific tumor characteristics, e.g. EGFR protein overexpression, respond better to gefitinib than patients without, leading to a more customized therapy option.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neonates are particularly susceptible to malnutrition due to their limited reserves of micronutrients and their rapid growth. In the present study, we examined the effect of vitamin C deficiency on markers of oxidative stress in plasma, liver and brain of weanling guinea pigs. Vitamin C deficiency caused rapid and significant depletion of ascorbate (P < 0.001), tocopherols (P < 0.001) and glutathione (P < 0.001), and a decrease in superoxide dismutase activity (P = 0.005) in the liver, while protein oxidation was significantly increased (P = 0.011). No changes in lipid oxidation or oxidatively damaged DNA were observed in this tissue. In the brain, the pattern was markedly different. Of the measured antioxidants, only ascorbate was significantly depleted (P < 0.001), but in contrast to the liver, ascorbate oxidation (P = 0.034), lipid oxidation (P < 0.001), DNA oxidation (P = 0.13) and DNA incision repair (P = 0.014) were all increased, while protein oxidation decreased (P = 0.003). The results show that the selective preservation of brain ascorbate and induction of DNA repair in vitamin C-deficient weanling guinea pigs is not sufficient to prevent oxidative damage. Vitamin C deficiency may therefore be particularly adverse during the neonatal period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinae of aged humans show signs of vascular regression. Vascular regression involves a mismatch between Angiopoietin-2 (Ang-2) and vascular endothelial growth factor (VEGF) expression. We used heterozygous Ang-2 deficient (Ang2LacZ) mice to evaluate murine retinal vascular changes and gene expression of growth factors. Vascular changes were assessed by quantitative retinal morphometry and gene expression levels of growth factors were measured by quantitative PCR. The numbers of endothelial cells and pericytes did not change in the Ang2LacZ retinae with age, whereas they decreased throughout the age spectrum studied in the wild type retinae. Moreover, vascular regression significantly decelerated in the heterozygous Ang2LacZ retinae (200% to 1 month), while the formation of acellular capillaries was significantly increased at 13 months in the wild type retinae (340% to 1 month). Gene expression analysis revealed that VEGF, Ang-1, PDGF-B and Ang2 mRNA levels were decreased in the wild type retinae at 9 month of age. However, the decrease of Ang-2 was smaller compared with other genes. While VEGF levels dropped in wild type mice up to 60% compared to 1 month, VEGF increased in heterozygous Ang-2 deficient retinae at an age of 9 months (141% to 1 month). Similarly, Ang-1 levels decreased in wild type mice (45% to 1 month), but remained stable in Ang2LacZ mice. These data suggest that Ang-2 gene dose reduction decelerates vasoregression in the retina with age. This effect links to higher levels of survival factors such as VEGF and Ang-1, suggesting that the ratio of these factors is critical for capillary cell survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nodular thyroid disease is a common problem. We present clinical guidelines for the management of patients with thyroid nodules, multinodular goiters and thyroid cysts for use by primary physicians. In the initial evaluation ultrasonography of the thyroid and fine-needle aspiration biopsy (FNAB) is recommended. FNAB has become the cornerstone in the evaluation of solitary thyroid nodules, cysts and dominant nodules within multinodular goiters. If the procedure is done properly, it should have a false-negative rate of less than 5% and a false-positive rate of not more than 1%. Thyroid radionuclide scans are less frequently used in the initial evaluation of a nodular goiter. Surgery is the primary therapy for patients with nodular thyroid disease. Other available treatment options are radioiodine and TSH-suppression with thyroxine. The main indications for surgery in euthyroid patients with thyroid nodule or with nontoxic multinodular goiter are recently documented or suspected malignancy, compression of the trachea and esophagus, significant growth of the nodule, recurrence of a cyst after aspiration, neck discomfort and cosmetic concern.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, we demonstrated that circulating levels of vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) are increased in sepsis (Yano, K., P.C. Liaw, J.M. Mullington, S.C. Shih, H. Okada, N. Bodyak, P.M. Kang, L. Toltl, B. Belikoff, J. Buras, et al. 2006. J. Exp. Med. 203:1447-1458). Moreover, enhanced VEGF/Flk-1 signaling was shown to contribute to sepsis morbidity and mortality. We tested the hypothesis that PlGF also contributes to sepsis outcome. In mouse models of endotoxemia and cecal ligation puncture, the genetic absence of PlGF or the systemic administration of neutralizing anti-PlGF antibodies resulted in higher mortality compared with wild-type or immunoglobulin G-injected controls, respectively. The increased mortality associated with genetic deficiency of PlGF was reversed by adenovirus (Ad)-mediated overexpression of PlGF. In the endotoxemia model, PlGF deficiency was associated with elevated circulating levels of VEGF, induction of VEGF expression in the liver, impaired cardiac function, and organ-specific accentuation of barrier dysfunction and inflammation. Mortality of endotoxemic PlGF-deficient mice was increased by Ad-mediated overexpression of VEGF and was blocked by expression of soluble Flt-1. Collectively, these data suggest that up-regulation of PlGF in sepsis is an adaptive host response that exerts its benefit, at least in part, by attenuating VEGF signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: The aim of the study was to evaluate the clinical outcomes of secondary functional cheilorhinoplasty of residual lip and nasal deformities caused by muscular deficiency in cleft patients. PATIENTS AND METHODS: During a 4-year period, 31 patients underwent cheilorhinoplasty, including complete reopening of the cleft borders and differentiated mimic muscle reorientation. In 21 patients, remarkable residual clefts of the anterior palate were also closed. Simultaneous alveolar bone grafting was performed in 15 patients. The minimum follow-up was 1 year. Cosmetic features evaluated were spontaneous facial appearance and changes in position of the nasal floor and the philtrum. The width of the alar base was measured. For functional outcomes, deficiency during mimic movements was evaluated, using standardized photographs taken preoperatively and postoperatively. The final results, judged according to defined criteria with several clinical factors, were compared. RESULTS: Cosmetic and functional improvement was achieved in all patients. In young patients (aged 4 to 9 years), the improvements were noteworthy. There were no differences in outcomes between the groups with and without simultaneous grafting, except for unilateral cases with minor muscular deficiency, in whom bone grafting before cheilorhinoplasty led to better results. CONCLUSION: In cases of major muscular deficiency, early cheilorhinoplasty should be performed at age 7 years, without waiting for the usual timing of bone grafting. In minor and moderate cases, the operation can ideally be done in combination with bone grafting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Growth/Differentiation Factors (GDFs) are a subgroup of the Bone Morphogenetic Proteins (BMPs) well known for their role in joint formation and chondrogenesis. Mice deficient in one of these signaling molecules, GDF-5, have recently been shown to exhibit a decreased rate of endochondral bone growth in the proximal tibia due to a significantly longer hypertrophic phase duration. GDF-7 is a related family member, which exhibits a high degree of sequence identity with GDF-5. The purpose of the present study was to determine whether GDF-7 deficiency also alters the endochondral bone growth rate in mice and, if so, how this is achieved. Stereologic and cell kinetic parameters in proximal tibial growth plates from 5-week-old female GDF-7 -/- mice and wild type control littermates were examined. GDF-7 deficiency resulted in a statistically significant increase in growth rate (+26%; p = 0.0084) and rate of cell loss at the chondrosseous junction (+25%; p = 0.0217). Cells from GDF-7 deficient mice also exhibited a significantly shorter hypertrophic phase duration compared to wild type controls (-27%; p = 0.0326). These data demonstrate that, in the absence of GDF-7, the rate of endochondral bone growth is affected through the modulation of hypertrophic phase duration in growth plate chondrocytes. These findings further support a growing body of evidence implicating the GDFs in the formation, maturation, and maintenance of healthy cartilage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Insulin-like growth factor-I (IGF-I) is critically involved in the control of cartilage matrix metabolism. It is well known that IGF-binding protein-3 (IGFBP-3) is increased during osteoarthritis (OA), but its function(s) is not known. In other cells, IGFBP-3 can regulate IGF-I action in the extracellular environment and can also act independently inside the cell; this includes transcriptional gene control in the nucleus. These studies were undertaken to localize IGFBP-3 in human articular cartilage, particularly within cells. DESIGN: Cartilage was dissected from human femoral heads derived from arthroplasty for OA, and OA grade assessed by histology. Tissue slices were further characterized by extraction and assay of IGFBPs by IGF ligand blot (LB) and by enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry (IHC) for IGF-I and IGFBP-3 was performed on cartilage from donors with mild, moderate and severe OA. Indirect fluorescence and immunogold-labeling IHC studies were included. RESULTS: LBs of chondrocyte lysates showed a strong signal for IGFBP-3. IHC of femoral cartilage sections at all OA stages showed IGF-I and IGFBP-3 matrix stain particularly in the top zones, and closely associated with most cells. A prominent perinuclear/nuclear IGFBP-3 signal was seen. Controls using non-immune sera or antigen-blocked antibody showed negative or strongly reduced stain. In frozen sections of human ankle cartilage, immunofluorescent IGFBP-3 stain co-localized with the nuclear 4',6-diamidino-2-phenyl indole (DAPI) stain in greater than 90% of the cells. Immunogold IHC of thin sections and transmission electron immunogold microscopy of ultra-thin sections showed distinct intra-nuclear staining. CONCLUSIONS: IGFBP-3 in human cartilage is located in the matrix and within chondrocytes in the cytoplasm and nuclei. This new finding indicates that the range of IGFBP-3 actions in articular cartilage is likely to include IGF-independent roles and opens the door to studies of its nuclear actions, including the possible regulation of hormone receptors or transcriptional complexes to control gene action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth/differentiation factors (GDFs) are a subgroup of the bone morphogenetic proteins best known for their role in joint formation and chondrogenesis. Mice deficient in one of these signaling proteins, GDF-5, exhibit numerous skeletal abnormalities, including shortened limb bones. The primary aim of this study was determine whether GDF-5 deficiency would alter the growth rate in growth plates from the long bones in mice and, if so, how this is achieved. Stereologic and cell kinetic parameters in proximal tibial growth plates from 5-week-old female GDF-5 -/- mice and control littermates were examined. GDF-5 deficiency resulted in a statistically significant reduction in growth rate (-14%, p=0.03). The effect of genotype on growth rate was associated with an altered hypertrophic phase duration, with hypertrophic cells from GDF-5 deficient mice exhibiting a significantly longer phase duration compared to control littermates (+25%, p=0.006). These data suggest that one way in which GDF-5 might modulate the rate of endochondral bone growth could be by affecting the duration of the hypertrophic phase in growth plate chondrocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renal reabsorption of inorganic phosphate (P(i)) is mainly mediated by the Na(+)-dependent P(i)-cotransporter NaPi-IIa that is expressed in the brush-border membrane (BBM) of renal proximal tubules. Regulation and apical expression of NaPi-IIa are known to depend on a network of interacting proteins. Most of the interacting partners identified so far associate with the COOH-terminal PDZ-binding motif (TRL) of NaPi-IIa. In this study GABA(A) receptor-associated protein (GABARAP) was identified as a novel interacting partner of NaPi-IIa applying a membrane yeast-two-hybrid system (MYTH 2.0) to screen a mouse kidney library with the TRL-truncated cotransporter as bait. GABARAP mRNA and protein are present in renal tubules, and the interaction of NaPi-IIa and GABARAP was confirmed by using glutathione S-transferase pulldowns from BBM and coimmunoprecipitations from transfected HEK293 cells. Amino acids 36-68 of GABARAP were identified as the determinant for the described interaction. The in vivo effects of this interaction were studied in a murine model. GABARAP(-/-) mice have reduced urinary excretion of P(i), higher Na(+)-dependent (32)P(i) uptake in BBM vesicles, and increased expression of NaPi-IIa in renal BBM compared with GABARAP(+/+) mice. The expression of Na(+)/H(+) exchanger regulatory factor (NHERF)1, an important scaffold for the apical expression of NaPi-IIa, is also increased in GABARAP(-/-) mice. The absence of GABARAP does not interfere with the regulation of the cotransporter by either parathyroid hormone or acute changes of dietary P(i) content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whereas a primary role of interleukin-1beta (IL-1beta) in local bone remodelling and articular inflammation has been well established, the effect of prolonged systemic administration of this cytokine on total skeletal Ca, somatic growth and joint tissue has not yet been investigated.