116 resultados para foreground background segmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the issue of fully automatic segmentation of a hip CT image with the goal to preserve the joint structure for clinical applications in hip disease diagnosis and treatment. For this purpose, we propose a Multi-Atlas Segmentation Constrained Graph (MASCG) method. The MASCG method uses multi-atlas based mesh fusion results to initialize a bone sheetness based multi-label graph cut for an accurate hip CT segmentation which has the inherent advantage of automatic separation of the pelvic region from the bilateral proximal femoral regions. We then introduce a graph cut constrained graph search algorithm to further improve the segmentation accuracy around the bilateral hip joint regions. Taking manual segmentation as the ground truth, we evaluated the present approach on 30 hip CT images (60 hips) with a 15-fold cross validation. When the present approach was compared to manual segmentation, an average surface distance error of 0.30 mm, 0.29 mm, and 0.30 mm was found for the pelvis, the left proximal femur, and the right proximal femur, respectively. A further look at the bilateral hip joint regions demonstrated an average surface distance error of 0.16 mm, 0.21 mm and 0.20 mm for the acetabulum, the left femoral head, and the right femoral head, respectively.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diet-related chronic diseases severely affect personal and global health. However, managing or treating these diseases currently requires long training and high personal involvement to succeed. Computer vision systems could assist with the assessment of diet by detecting and recognizing different foods and their portions in images. We propose novel methods for detecting a dish in an image and segmenting its contents with and without user interaction. All methods were evaluated on a database of over 1600 manually annotated images. The dish detection scored an average of 99% accuracy with a .2s/image run time, while the automatic and semi-automatic dish segmentation methods reached average accuracies of 88% and 91% respectively, with an average run time of .5s/image, outperforming competing solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Estimation of glomerular filtration rate (eGFR) using a common formula for both adult and pediatric populations is challenging. Using inulin clearances (iGFRs), this study aims to investigate the existence of a precise age cutoff beyond which the Modification of Diet in Renal Disease (MDRD), the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), or the Cockroft-Gault (CG) formulas, can be applied with acceptable precision. Performance of the new Schwartz formula according to age is also evaluated. METHOD We compared 503 iGFRs for 503 children aged between 33 months and 18 years to eGFRs. To define the most precise age cutoff value for each formula, a circular binary segmentation method analyzing the formulas' bias values according to the children's ages was performed. Bias was defined by the difference between iGFRs and eGFRs. To validate the identified cutoff, 30% accuracy was calculated. RESULTS For MDRD, CKD-EPI and CG, the best age cutoff was ≥14.3, ≥14.2 and ≤10.8 years, respectively. The lowest mean bias and highest accuracy were -17.11 and 64.7% for MDRD, 27.4 and 51% for CKD-EPI, and 8.31 and 77.2% for CG. The Schwartz formula showed the best performance below the age of 10.9 years. CONCLUSION For the MDRD and CKD-EPI formulas, the mean bias values decreased with increasing child age and these formulas were more accurate beyond an age cutoff of 14.3 and 14.2 years, respectively. For the CG and Schwartz formulas, the lowest mean bias values and the best accuracies were below an age cutoff of 10.8 and 10.9 years, respectively. Nevertheless, the accuracies of the formulas were still below the National Kidney Foundation Kidney Disease Outcomes Quality Initiative target to be validated in these age groups and, therefore, none of these formulas can be used to estimate GFR in children and adolescent populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose To this day, the slit lamp remains the first tool used by an ophthalmologist to examine patient eyes. Imaging of the retina poses, however, a variety of problems, namely a shallow depth of focus, reflections from the optical system, a small field of view and non-uniform illumination. For ophthalmologists, the use of slit lamp images for documentation and analysis purposes, however, remains extremely challenging due to large image artifacts. For this reason, we propose an automatic retinal slit lamp video mosaicking, which enlarges the field of view and reduces amount of noise and reflections, thus enhancing image quality. Methods Our method is composed of three parts: (i) viable content segmentation, (ii) global registration and (iii) image blending. Frame content is segmented using gradient boosting with custom pixel-wise features. Speeded-up robust features are used for finding pair-wise translations between frames with robust random sample consensus estimation and graph-based simultaneous localization and mapping for global bundle adjustment. Foreground-aware blending based on feathering merges video frames into comprehensive mosaics. Results Foreground is segmented successfully with an area under the curve of the receiver operating characteristic curve of 0.9557. Mosaicking results and state-of-the-art methods were compared and rated by ophthalmologists showing a strong preference for a large field of view provided by our method. Conclusions The proposed method for global registration of retinal slit lamp images of the retina into comprehensive mosaics improves over state-of-the-art methods and is preferred qualitatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Brugada syndrome (BrS) is an inherited arrhythmia characterized by ST-segment elevation in V1-V3 leads and negative T wave on standard ECG. BrS patients are at risk of sudden cardiac death (SCD) due to ventricular tachyarrhythmia. At least 17 genes have been proposed to be linked to BrS, although recent findings suggested a polygenic background. Mutations in SCN5A, the gene coding for the cardiac sodium channel Nav1.5, have been found in 15-30% of index cases. Here, we present the results of clinical, genetic, and expression studies of a large Iranian family with BrS carrying a novel genetic variant (p.P1506S) in SCN5A. By performing whole-cell patch-clamp experiments using HEK293 cells expressing wild-type (WT) or p.P1506S Nav1.5 channels, hyperpolarizing shift of the availability curve, depolarizing shift of the activation curve, and hastening of the fast inactivation process were observed. These mutant-induced alterations lead to a loss of function of Nav1.5 and thus suggest that the p.P1506S variant is pathogenic. In addition, cascade familial screening found a family member with BrS who did not carry the p.P1506S mutation. Additional next generation sequencing analyses revealed the p.R25W mutation in KCNH2 gene in SCN5A-negative BrS patients. These findings illustrate the complex genetic background of BrS found in this family and the possible pathogenic role of a new SCN5A genetic variant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are currently setting up a facility for low-background gamma-ray spectrometry based on a HPGe detector. It is dedicated to material screening for the XENON and DARWIN dark matter projects as well as to the characterization of meteorites. The detector will be installed in a medium depth (∼620 m.w.e.) underground laboratory in Switzerland with several layers of shielding and an active muon-veto. The GeMSE facility will be operational by fall 2015 with an expected background rate of ∼250 counts/day (100-2700 keV).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83-0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To better constrain the parameters of the interstellar neutral flow, we searched the Interstellar Boundary EXplorer (IBEX)-Lo database for helium and oxygen from the interstellar medium in the anti-ram direction in the three years (2009-2011) with the lowest background rates. We found that IBEX-Lo cannot observe interstellar helium from the anti-ram direction because the helium energy is too low for indirect detection by sputtering off the IBEX-Lo conversion surface. Our results show that this sputtering process has a low energy threshold between 25 and 30 eV, whereas the energy of the incident helium is only 10 eV for these observations. Interstellar oxygen, on the other hand, could in principle be detected in the anti-ram hemisphere, but the expected magnitude of the signal is close to the detection limit imposed by counting statistics and by the magnetospheric foreground.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Diabetes mellitus is spreading throughout the world and diabetic individuals have been shown to often assess their food intake inaccurately; therefore, it is a matter of urgency to develop automated diet assessment tools. The recent availability of mobile phones with enhanced capabilities, together with the advances in computer vision, have permitted the development of image analysis apps for the automated assessment of meals. GoCARB is a mobile phone-based system designed to support individuals with type 1 diabetes during daily carbohydrate estimation. In a typical scenario, the user places a reference card next to the dish and acquires two images using a mobile phone. A series of computer vision modules detect the plate and automatically segment and recognize the different food items, while their 3D shape is reconstructed. Finally, the carbohydrate content is calculated by combining the volume of each food item with the nutritional information provided by the USDA Nutrient Database for Standard Reference. Objective: The main objective of this study is to assess the accuracy of the GoCARB prototype when used by individuals with type 1 diabetes and to compare it to their own performance in carbohydrate counting. In addition, the user experience and usability of the system is evaluated by questionnaires. Methods: The study was conducted at the Bern University Hospital, “Inselspital” (Bern, Switzerland) and involved 19 adult volunteers with type 1 diabetes, each participating once. Each study day, a total of six meals of broad diversity were taken from the hospital’s restaurant and presented to the participants. The food items were weighed on a standard balance and the true amount of carbohydrate was calculated from the USDA nutrient database. Participants were asked to count the carbohydrate content of each meal independently and then by using GoCARB. At the end of each session, a questionnaire was completed to assess the user’s experience with GoCARB. Results: The mean absolute error was 27.89 (SD 38.20) grams of carbohydrate for the estimation of participants, whereas the corresponding value for the GoCARB system was 12.28 (SD 9.56) grams of carbohydrate, which was a significantly better performance ( P=.001). In 75.4% (86/114) of the meals, the GoCARB automatic segmentation was successful and 85.1% (291/342) of individual food items were successfully recognized. Most participants found GoCARB easy to use. Conclusions: This study indicates that the system is able to estimate, on average, the carbohydrate content of meals with higher accuracy than individuals with type 1 diabetes can. The participants thought the app was useful and easy to use. GoCARB seems to be a well-accepted supportive mHealth tool for the assessment of served-on-a-plate meals.