115 resultados para adaptive capacity, climate change, Ontario wine industry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flood seasonality of catchments in Switzerland is likely to change under climate change because of anticipated alterations of precipitation as well as snow accumulation and melt. Information on this change is crucial for flood protection policies, for example, or regional flood frequency analysis. We analysed projected changes in mean annual and maximum floods of a 22-year period for 189 catchments in Switzerland and two scenario periods in the 21st century based on an ensemble of climate scenarios. The flood seasonality was analysed with directional statistics that allow assessing both changes in the mean date a flood occurs as well as changes in the strength of the seasonality. We found that the simulated change in flood seasonality is a function of the change in flow regime type. If snow accumulation and melt is important in a catchment during the control period, then the anticipated change in flood seasonality is most pronounced. Decreasing summer precipitation in the scenarios additionally affects the flood seasonality (mean date of flood occurrence) and leads to a decreasing strength of seasonality, that is a higher temporal variability in most cases. The magnitudes of mean annual floods and more clearly of maximum floods (in a 22-year period) are expected to increase in the future because of changes in flood-generating processes and scaled extreme precipitation. Southern alpine catchments show a different signal, though: the simulated mean annual floods decrease in the far future, that is at the end of the 21st century. Copyright © 2013 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract. Rock magnetic, biochemical and inorganic records of the sediment cores PG1351 and Lz1024 from Lake El’gygytgyn, Chukotka peninsula, Far East Russian Arctic, were subject to a hierarchical agglomerative cluster analysis in order to refine and extend the pattern of climate modes as defined by Melles et al. (2007). Cluster analysis of the data obtained from both cores yielded similar results, differentiating clearly between the four climate modes warm, peak warm, cold and dry, and cold and moist. In addition, two transitional phases were identified, representing the early stages of a cold phase and slightly colder conditions during a warm phase. The statistical approach can thus be used to resolve gradual changes in the sedimentary units as an indicator of available oxygen in the hypolimnion in greater detail. Based upon cluster analyses on core Lz1024, the published succession of climate modes in core PG1351, covering the last 250 ka, was modified and extended back to 350 ka. Comparison to the marine oxygen isotope (�18O) stack LR04 (Lisiecki and Raymo, 2005) and the summer insolation at 67.5� N, with the extended Lake El’gygytgyn parameter records of magnetic susceptibility (�LF), total organic carbon content (TOC) and the chemical index of alteration (CIA; Minyuk et al., 2007), revealed that all stages back to marine isotope stage (MIS) 10 and most of the substages are clearly reflected in the pattern derived from the cluster analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tajikistan is particularly exposed to the risks of climate change. Its widely degraded landscapes are badly prepared to cope with changes in precipitation patterns, increased temperatures, droughts, and the spread of pests and disease. Sustainable land management (SLM) provides a “basket of opportunities” to address these challenges, particularly for increasing land productivity, improving livelihoods, and protecting ecosystems. Within the Pilot Program for Climate Resilience (PPCR) in Tajikistan 70 SLM technologies and approaches on how to implement SLM were documented with the World Overview of Conservation Approaches and Technologies (WOCAT ) tools in 2011. For this purpose a climate change adaptation module was developed and tested in order to enhance the understanding about climate change resilience of SLM practices and community workshops conducted to on adaptation mechanisms by rural communities in Tajikistan. The analysis came up with four guiding principles for applying SLM for adapting to climate change: 1. Diversification of land use technologies and farm incomes; 2. Intensification of use of natural resources; 3. Expansion of highly productive land use technologies; 4. Protection of land and livelihoods from extreme weather events. Furthermore, SLM must be up-scaled from isolated plots to entire zones or landscapes and the project developed the concept of three concentric villages zones, the in-, near- and off-village zones. Land users, advisors, and decision- and policy makers face the task of finding management practices that best suit site-specific conditions. This task is most efficiently addressed in collaborative effort, and building up and managing a respective knowledge platform.