169 resultados para Stehman, Fred
Resumo:
The vestibular system contributes to the control of posture and eye movements and is also involved in various cognitive functions including spatial navigation and memory. These functions are subtended by projections to a vestibular cortex, whose exact location in the human brain is still a matter of debate (Lopez and Blanke, 2011). The vestibular cortex can be defined as the network of all cortical areas receiving inputs from the vestibular system, including areas where vestibular signals influence the processing of other sensory (e.g. somatosensory and visual) and motor signals. Previous neuroimaging studies used caloric vestibular stimulation (CVS), galvanic vestibular stimulation (GVS), and auditory stimulation (clicks and short-tone bursts) to activate the vestibular receptors and localize the vestibular cortex. However, these three methods differ regarding the receptors stimulated (otoliths, semicircular canals) and the concurrent activation of the tactile, thermal, nociceptive and auditory systems. To evaluate the convergence between these methods and provide a statistical analysis of the localization of the human vestibular cortex, we performed an activation likelihood estimation (ALE) meta-analysis of neuroimaging studies using CVS, GVS, and auditory stimuli. We analyzed a total of 352 activation foci reported in 16 studies carried out in a total of 192 healthy participants. The results reveal that the main regions activated by CVS, GVS, or auditory stimuli were located in the Sylvian fissure, insula, retroinsular cortex, fronto-parietal operculum, superior temporal gyrus, and cingulate cortex. Conjunction analysis indicated that regions showing convergence between two stimulation methods were located in the median (short gyrus III) and posterior (long gyrus IV) insula, parietal operculum and retroinsular cortex (Ri). The only area of convergence between all three methods of stimulation was located in Ri. The data indicate that Ri, parietal operculum and posterior insula are vestibular regions where afferents converge from otoliths and semicircular canals, and may thus be involved in the processing of signals informing about body rotations, translations and tilts. Results from the meta-analysis are in agreement with electrophysiological recordings in monkeys showing main vestibular projections in the transitional zone between Ri, the insular granular field (Ig), and SII.
Resumo:
BACKGROUND: The observation of conspecifics influences our bodily perceptions and actions: Contagious yawning, contagious itching, or empathy for pain, are all examples of mechanisms based on resonance between our own body and others. While there is evidence for the involvement of the mirror neuron system in the processing of motor, auditory and tactile information, it has not yet been associated with the perception of self-motion. METHODOLOGY/PRINCIPAL FINDINGS: We investigated whether viewing our own body, the body of another, and an object in motion influences self-motion perception. We found a visual-vestibular congruency effect for self-motion perception when observing self and object motion, and a reduction in this effect when observing someone else's body motion. The congruency effect was correlated with empathy scores, revealing the importance of empathy in mirroring mechanisms. CONCLUSIONS/SIGNIFICANCE: The data show that vestibular perception is modulated by agent-specific mirroring mechanisms. The observation of conspecifics in motion is an essential component of social life, and self-motion perception is crucial for the distinction between the self and the other. Finally, our results hint at the presence of a "vestibular mirror neuron system".
Resumo:
The body schema is a key component in accomplishing egocentric mental transformations, which rely on bodily reference frames. These reference frames are based on a plurality of different cognitive and sensory cues among which the vestibular system plays a prominent role. We investigated whether a bottom-up influence of vestibular stimulation modulates the ability to perform egocentric mental transformations. Participants were significantly faster to make correct spatial judgments during vestibular stimulation as compared to sham stimulation. Interestingly, no such effects were found for mental transformation of hand stimuli or during mental transformations of letters, thus showing a selective influence of vestibular stimulation on the rotation of whole-body reference frames. Furthermore, we found an interaction with the angle of rotation and vestibular stimulation demonstrating an increase in facilitation during mental body rotations in a direction congruent with rightward vestibular afferents. We propose that facilitation reflects a convergence in shared brain areas that process bottom-up vestibular signals and top-down imagined whole-body rotations, including the precuneus and tempero-parietal junction. Ultimately, our results show that vestibular information can influence higher-order cognitive processes, such as the body schema and mental imagery.
Resumo:
Perceptual learning can occur when stimuli are only imagined, i.e., without proper stimulus presentation. For example, perceptual learning improved bisection discrimination when only the two outer lines of the bisection stimulus were presented and the central line had to be imagined. Performance improved also with other static stimuli. In non-learning imagery experiments, imagining static stimuli is different from imagining motion stimuli. We hypothesized that those differences also affect imagery perceptual learning. Here, we show that imagery training also improves motion direction discrimination. Learning occurs when no stimulus at all is presented during training, whereas no learning occurs when only noise is presented. The interference between noise and mental imagery possibly hinders learning. For static bisection stimuli, the pattern is just the opposite. Learning occurs when presented with the two outer lines of the bisection stimulus, i.e., with only a part of the visual stimulus, while no learning occurs when no stimulus at all is presented.
Resumo:
Cytochrome P450 2E1 (CYP2E1) is a key enzyme in the metabolic activation of many low molecular weight toxicants and also an important contributor to oxidative stress. A noninvasive method to monitor CYP2E1 activity in vivo would be of great value for studying the role of CYP2E1 in chemical-induced toxicities and stress-related diseases. In this study, a mass spectrometry-based metabolomic approach was used to identify a metabolite biomarker of CYP2E1 through comparing the urine metabolomes of wild-type (WT), Cyp2e1-null, and CYP2E1-humanized mice. Metabolomic analysis with multivariate models of urine metabolites revealed a clear separation of Cyp2e1-null mice from WT and CYP2E1-humanized mice in the multivariate models of urine metabolomes. Subsequently, 2-piperidone was identified as a urinary metabolite that inversely correlated to the CYP2E1 activity in the three mouse lines. Backcrossing of WT and Cyp2e1-null mice, together with targeted analysis of 2-piperidone in mouse serum, confirmed the genotype dependency of 2-piperidone. The accumulation of 2-piperidone in the Cyp2e1-null mice was mainly caused by the changes in the biosynthesis and degradation of 2-piperidone because compared with the WT mice, the conversion of cadaverine to 2-piperidone was higher, whereas the metabolism of 2-piperidone to 6-hydroxy-2-piperidone was lower in the Cyp2e1-null mice. Overall, untargeted metabolomic analysis identified a correlation between 2-piperidone concentrations in urine and the expression and activity of CYP2E1, thus providing a noninvasive metabolite biomarker that can be potentially used in to monitor CYP2E1 activity.