121 resultados para Pulsed Dielectrick Barrier Discharge


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human blood brain barrier (BBB) is a selective barrier formed by human brain endothelial cells (hBECs), which is important to ensure adequate neuronal function and protect the central nervous system (CNS) from disease. The development of human in vitro BBB models is thus of utmost importance for drug discovery programs related to CNS diseases. Here, we describe a method to generate a human BBB model using cord blood-derived hematopoietic stem cells. The cells were initially differentiated into ECs followed by the induction of BBB properties by co-culture with pericytes. The brain-like endothelial cells (BLECs) express tight junctions and transporters typically observed in brain endothelium and maintain expression of most in vivo BBB properties for at least 20 days. The model is very reproducible since it can be generated from stem cells isolated from different donors and in different laboratories, and could be used to predict CNS distribution of compounds in human. Finally, we provide evidence that Wnt/β-catenin signaling pathway mediates in part the BBB inductive properties of pericytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Duffy antigen/receptor for chemokines, DARC, belongs to the family of atypical heptahelical chemokine receptors that do not couple to G proteins and therefore fail to transmit conventional intracellular signals. Here we show that during experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, the expression of DARC is upregulated at the blood-brain barrier. These findings are corroborated by the presence of a significantly increased number of subcortical white matter microvessels staining positive for DARC in human multiple sclerosis brains as compared to control tissue. Using an in vitro blood-brain barrier model we demonstrated that endothelial DARC mediates the abluminal to luminal transport of inflammatory chemokines across the blood-brain barrier. An involvement of DARC in experimental autoimmune encephalomyelitis pathogenesis was confirmed by the observed ameliorated experimental autoimmune encephalomyelitis in Darc(-/-) C57BL/6 and SJL mice, as compared to wild-type control littermates. Experimental autoimmune encephalomyelitis studies in bone marrow chimeric Darc(-/-) and wild-type mice revealed that increased plasma levels of inflammatory chemokines in experimental autoimmune encephalomyelitis depended on the presence of erythrocyte DARC. However, fully developed experimental autoimmune encephalomyelitis required the expression of endothelial DARC. Taken together, our data show a role for erythrocyte DARC as a chemokine reservoir and that endothelial DARC contributes to the pathogenesis of experimental autoimmune encephalomyelitis by shuttling chemokines across the blood-brain barrier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blood-brain barrier (BBB) is essential for maintaining homeostasis within the central nervous system (CNS) and is a prerequisite for proper neuronal function. The BBB is localized to microvascular endothelial cells that strictly control the passage of metabolites into and out of the CNS. Complex and continuous tight junctions and lack of fenestrae combined with low pinocytotic activity make the BBB endothelium a tight barrier for water soluble moleucles. In combination with its expression of specific enzymes and transport molecules, the BBB endothelium is unique and distinguishable from all other endothelial cells in the body. During embryonic development, the CNS is vascularized by angiogenic sprouting from vascular networks originating outside of the CNS in a precise spatio-temporal manner. The particular barrier characteristics of BBB endothelial cells are induced during CNS angiogenesis by cross-talk with cellular and acellular elements within the developing CNS. In this review, we summarize the currently known cellular and molecular mechanisms mediating brain angiogenesis and introduce more recently discovered CNS-specific pathways (Wnt/β-catenin, Norrin/Frizzled4 and hedgehog) and molecules (GPR124) that are crucial in BBB differentiation and maturation. Finally, based on observations that BBB dysfunction is associated with many human diseases such as multiple sclerosis, stroke and brain tumors, we discuss recent insights into the molecular mechanisms involved in maintaining barrier characteristics in the mature BBB endothelium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In acute neuroinflammatory states such as meningitis, neutrophils cross the blood-brain barrier (BBB) and contribute to pathological alterations of cerebral function. The mechanisms that govern neutrophil migration across the BBB are ill defined. Using live-cell imaging, we show that LPS-stimulated BBB endothelium supports neutrophil arrest, crawling, and diapedesis under physiological flow in vitro. Investigating the interactions of neutrophils from wild-type, CD11a(-/-), CD11b(-/-), and CD18(null) mice with wild-type, junctional adhesion molecule-A(-/-), ICAM-1(null), ICAM-2(-/-), or ICAM-1(null)/ICAM-2(-/-) primary mouse brain microvascular endothelial cells, we demonstrate that neutrophil arrest, polarization, and crawling required G-protein-coupled receptor-dependent activation of β2 integrins and binding to endothelial ICAM-1. LFA-1 was the prevailing ligand for endothelial ICAM-1 in mediating neutrophil shear resistant arrest, whereas Mac-1 was dominant over LFA-1 in mediating neutrophil polarization on the BBB in vitro. Neutrophil crawling was mediated by endothelial ICAM-1 and ICAM-2 and neutrophil LFA-1 and Mac-1. In the absence of crawling, few neutrophils maintained adhesive interactions with the BBB endothelium by remaining either stationary on endothelial junctions or displaying transient adhesive interactions characterized by a fast displacement on the endothelium along the direction of flow. Diapedesis of stationary neutrophils was unchanged by the lack of endothelial ICAM-1 and ICAM-2 and occurred exclusively via the paracellular pathway. Crawling neutrophils, although preferentially crossing the BBB through the endothelial junctions, could additionally breach the BBB via the transcellular route. Thus, β2 integrin-mediated neutrophil crawling on endothelial ICAM-1 and ICAM-2 is a prerequisite for transcellular neutrophil diapedesis across the inflamed BBB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Depression is associated with poor prognosis in patients with cardiovascular disease (CVD). We hypothesized that depressive symptoms at discharge from a cardiac rehabilitation program are associated with an increased risk of future CVD-related hospitalizations. Methods: We examined 486 CVD patients (mean age = 59.8 ± 11.2) who enrolled in a comprehensive 3-month rehabilitation program and completed the depression subscale of the Hospital Anxiety and Depression Scale (HADS-D). At follow-up we evaluated the predictive value of depressive symptoms for CVD-related hospitalizations, controlling for sociodemographic factors, cardiovascular risk factors, and disease severity. Results: During a mean follow-up of 41.5 ± 15.6 months, 63 patients experienced a CVD-related hospitalization. The percentage of depressive patients (HADS-D ≥ 8) decreased from 16.9% at rehabilitation entry to 10.7% at discharge. Depressive symptoms at discharge from rehabilitation were a significant predictor of outcome (HR 1.32, 95% CI 1.09–1.60; p =0.004). Patients with clinically relevant depressive symptoms at discharge had a 2.5-fold increased relative risk of poor cardiac prognosis compared to patients without clinically relevant depressive symptoms independently of other prognostic variables. Conclusion: In patients with CVD, depressive symptoms at discharge from rehabilitation indicated a poor cardiac prognosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ARGONTUBE is a liquid argon time projection chamber (LAr TPC) with a drift field generated in-situ by a Greinacher voltage multiplier circuit. We present results on the measurement of the drift-field distribution inside ARGONTUBE using straight ionization tracks generated by an intense UV laser beam. Our analysis is based on a simplified model of the charging of a multi-stage Greinacher circuit to describe the voltages on the field cage rings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Eosinophilic esophagitis (EoE) exhibits esophageal dysfunction owing to an eosinophil-predominant inflammation. Activated eosinophils generate eosinophil extracellular traps (EETs) able to kill bacteria. There is evidence of an impaired barrier function in EoE that might allow pathogens to invade the esophagus. This study aimed to investigate the presence and distribution of EETs in esophageal tissues from EoE patients and their association with possible epithelial barrier defects. METHODS Anonymized tissue samples from 18 patients with active EoE were analyzed. The presence of DNA nets associated with eosinophil granule proteins forming EETs and the expression of filaggrin, the protease inhibitor lympho-epithelial Kazal-type-related inhibitor (LEKTI), antimicrobial peptides, and cytokines were evaluated by confocal microscopy following immune fluorescence staining techniques. RESULTS Eosinophil extracellular trap formation occurred frequently and was detected in all EoE samples correlating with the numbers of infiltrating eosinophils. While the expression of both filaggrin and LEKTI was reduced, epithelial antimicrobial peptides (human beta-defensin-2, human beta-defensin-3, cathelicidin LL-37, psoriasin) and cytokines (TSLP, IL-25, IL-32, IL-33) were elevated in EoE as compared to normal esophageal tissues. There was a significant correlation between EET formation and TSLP expression (P = 0.02) as well as psoriasin expression (P = 0.016). On the other hand, a significant negative correlation was found between EET formation and LEKTI expression (P = 0.016). CONCLUSION Active EoE exhibits the presence of EETs. Indications of epithelial barrier defects in association with epithelial cytokines are also present which may have contributed to the activation of eosinophils. The formation of EETs could serve as a firewall against the invasion of pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of landscapes crucially depends on the climate history. This is particularly evident in South America where landscape responses to orbital climate shifts have been well documented. However, while most studies have focused on inferring temperature variations from paleoclimate proxy data, estimates of water budget changes have been complicated because of a lack of adequate physical information. Here, we present a methodology and related results, which allowed us to extract water discharge values from the sedimentary record of the 40 Ka-old fluvial terrace deposits in the Pisco valley, western Peru. In particular, this valley hosts a Quaternary cut-and-fill succession that we used, in combination with beryllium-10 (10Be)-based sediment flux, gauging records, channel geometries and grain size measurements, to quantitatively assess sediment and water discharge values c. 40 Ka ago in relation to present-day conditions. We compare these discharge estimates to the discharge regime of the modern Pisco River and find that the water discharge of the paleo-Pisco River, during the Minchin pluvial period c. 40 Ka ago, was c. 7–8 times greater than the modern Pisco River if considering the mean and the maximum water discharge. In addition, the calculations show that inferred water discharge estimates are mainly dependent on channel gradients and grain size values, and to a lesser extent on channel width measures. Finally, we found that the c. 40 Ka-old Minchin terrace material was poorer sorted than the modern deposits, which might reflect that sediment transport during the past period was characterized by a larger divergence from equal mobility compared to the modern situation. In summary, the differences in grain size distribution and inferred water discharge estimates between the modern and the paleo-Pisco River suggests that the 40 Ka-old Minchin period was characterized by a wetter climate and more powerful flood events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cutaneous collagenous vasculopathy (CCV) is a rare idiopathic microangiopathy of the cutaneous vasculature characterized histologically by the presence of dilated small blood vessels with flat endothelial cells and thickened walls containing hyaline material in the upper dermis. We report an elderly patient presenting with an extensive form of CCV involving the trunk, upper and lower limbs. She was treated with Multiplex PDL 595-nm/Nd:YAG 1,064-nm laser and optimized pulsed light. This approach, which has never been reported for CCV so far, resulted in a striking and almost complete clearance of the widespread lesions. We here review our knowledge about CCV and therapeutic options available with a survey of the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To investigate the blood-CSF barrier (BCSFB) dysfunction in aseptic meningitis. METHODS In our case series of 14 patients with acute aseptic meningitis, we compared MRI characteristics with CSF findings. RESULTS Contrast enhancement in the sulcal space in a leptomeningeal pattern was visualized in 7 patients with BCSFB dysfunction categorized as moderate to severe as evidenced by the CSF/serum albumin ratio (Qalb) but was not present in those with mild or no barrier disturbance (p = 0.001). The Qalb as a marker for the leakiness of the BCSFB and, more indirectly, of the blood-brain barrier (BBB) was positively correlated with the incidence of leptomeningeal contrast enhancement seen on postcontrast fluid-attenuated inversion recovery (FLAIR) MRI (p = 0.003). Patients with a more pronounced brain barrier dysfunction recovered more slowly and stayed longer in the hospital. CONCLUSIONS The severity of meningeal BBB disturbance can be estimated on postcontrast FLAIR MRI, which may be of diagnostic value in patients with aseptic meningitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intensive efforts in recent years to develop and commercialize in vitro alternatives in the field of risk assessment have yielded new promising two- and three dimensional (3D) cell culture models. Nevertheless, a realistic 3D in vitro alveolar model is not available yet. Here we report on the biofabrication of the human air-blood tissue barrier analogue composed of an endothelial cell, basement membrane and epithelial cell layer by using a bioprinting technology. In contrary to the manual method, we demonstrate that this technique enables automatized and reproducible creation of thinner and more homogeneous cell layers, which is required for an optimal air-blood tissue barrier. This bioprinting platform will offer an excellent tool to engineer an advanced 3D lung model for high-throughput screening for safety assessment and drug efficacy testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate rainfall data are the key input parameter for modelling river discharge and soil loss. Remote areas of Ethiopia often lack adequate precipitation data and where these data are available, there might be substantial temporal or spatial gaps. To counter this challenge, the Climate Forecast System Reanalysis (CFSR) of the National Centers for Environmental Prediction (NCEP) readily provides weather data for any geographic location on earth between 1979 and 2014. This study assesses the applicability of CFSR weather data to three watersheds in the Blue Nile Basin in Ethiopia. To this end, the Soil and Water Assessment Tool (SWAT) was set up to simulate discharge and soil loss, using CFSR and conventional weather data, in three small-scale watersheds ranging from 112 to 477 ha. Calibrated simulation results were compared to observed river discharge and observed soil loss over a period of 32 years. The conventional weather data resulted in very good discharge outputs for all three watersheds, while the CFSR weather data resulted in unsatisfactory discharge outputs for all of the three gauging stations. Soil loss simulation with conventional weather inputs yielded satisfactory outputs for two of three watersheds, while the CFSR weather input resulted in three unsatisfactory results. Overall, the simulations with the conventional data resulted in far better results for discharge and soil loss than simulations with CFSR data. The simulations with CFSR data were unable to adequately represent the specific regional climate for the three watersheds, performing even worse in climatic areas with two rainy seasons. Hence, CFSR data should not be used lightly in remote areas with no conventional weather data where no prior analysis is possible.