121 resultados para Plastic debris
Resumo:
The current paper is an excerpt from the doctoral thesis ”Multi-Layer Insulation as Contribution to Orbital Debris”written at the Institute of Aerospace Systems of the Technische Universit ̈at of Braunschweig. The Multi-Layer In-sulation (MLI) population included in ESA’s MASTER-2009 (M eteoroid and Space-Debris Terrestrial Environment Reference) software is based on models for two mechanisms: One model simulates the release of MLI debris during fragmentation events while another estimates the continuo us release of larger MLI pieces due to aging related deterioration of the material. The aim of the thesis was to revise the MLI models from the base up followed by a re-validation of the simulated MLI debris population. The validation is based on comparison to measurement data of the GEO and GTO debris environment obtained by the Astronomical Institute of the University of Bern (AIUB) using ESA’s Space Debris Telescope (ESASDT), the 1-m Zeiss telescope located at the Optical Ground Station (OGS) at the Teide Observatory at Tenerife, Spain. The re-validation led to the conclusion that MLI may cover a much smaller portion of the observed objects than previously published. Further investigation of the resulting discrepancy revealed that the contribution of altogether nine known Ariane H-10 upper stage explosion events which occurred between 1984 and 2002 has very likely been underestimated in past simulations.
Resumo:
Debris flows represent a widespread threat to villages and small towns in the Swiss Alps. For many centuries people “managed” such risks by trying to avoid hazardous areas. However, major debris flow and flood events in the last 25 years have revealed that the degree of freedom to engage in this type of risk management has substantially decreased. This became especially evident during the 1999 disasters in a number of places in Switzerland. The winter of that year was unusually wet. In February heavy snowfall triggered destructive avalanches. In May high temperatures caused heavy snowmelt, with excessive rainfall contributing more water to the already saturated soils. Landslides, debris flows and floods were triggered in many locations, including Sörenberg. Hazard prevention and disaster management have a long tradition in Switzerland, although an integrated approach to risk management is rather new. Only in recent years have methods and tools been developed to assess hazards, define protection goals, and implement disaster reduction measures. The case of Sörenberg serves as an example of how today's approaches to disaster reduction are implemented at the local level.
Resumo:
Based on historic documents the event history for 17 mountain torrents in the Swiss Alps was evaluated. Four classes could be determined for the recurrence interval of the debris flow events. The magnitude is not necessarily dependent on the recurrence interval. The characteristics of the catchment basin (disposition) are mainly controlling the magnitude. In order to evaluate the effects of climatic change on the debris flow activity, knowledge about the magnitude and the frequency are necessary.
Resumo:
A great number of debris flows occurred during the flood catastrophes of the summer of 1987 in the Swiss Alps. Aerial photography, field investigations and eyewitness accounts documented and analysed the events. As an example of the reconstructed major events, the large debris flow in the Varuna valley involved an estimated peak discharge between 400 and 800 m3/s and an event magnitude of 200,000 m3. Several single pulses were observed; the duration of each of them appeared to be not more than a few minutes. Apart from incision into weak bedrock, the maximum erosion depth seemed to depend on the channel gradient. Based on approximately 600 events, typical starting zones and rainfall conditions are discussed with regard to the triggering conditions. Existing and new empirical formulae are proposed to estimate the most important flow parameters. These values are compared to debris flow data from Canada and Japan.
Resumo:
The currently proposed space debris remediation measures include the active removal of large objects and “just in time” collision avoidance by deviating the objects using, e.g., ground-based lasers. Both techniques require precise knowledge of the attitude state and state changes of the target objects. In the former case, to devise methods to grapple the target by a tug spacecraft, in the latter, to precisely propagate the orbits of potential collision partners as disturbing forces like air drag and solar radiation pressure depend on the attitude of the objects. Non-resolving optical observations of the magnitude variations, so-called light curves, are a promising technique to determine rotation or tumbling rates and the orientations of the actual rotation axis of objects, as well as their temporal changes. The 1-meter telescope ZIMLAT of the Astronomical Institute of the University of Bern has been used to collect light curves of MEO and GEO objects for a considerable period of time. Recently, light curves of Low Earth Orbit (LEO) targets were acquired as well. We present different observation methods, including active tracking using a CCD subframe readout technique, and the use of a high-speed scientific CMOS camera. Technical challenges when tracking objects with poor orbit redictions, as well as different data reduction methods are addressed. Results from a survey of abandoned rocket upper stages in LEO, examples of abandoned payloads and observations of high area-to-mass ratio debris will be resented. Eventually, first results of the analysis of these light curves are provided.
Resumo:
The population of space debris increased drastically during the last years. These objects have become a great threat for active satellites. Because the relative velocities between space debris and satellites are high, space debris objects may destroy active satellites through collisions. Furthermore, collisions involving massive objects produce large number of fragments leading to significant growth of the space debris population. The long term evolution of the debris population is essentially driven by so-called catastrophic collisions. An effective remediation measure in order to stabilize the population in Low Earth Orbit (LEO) is therefore the removal of large, massive space debris. To remove these objects, not only precise orbits, but also more detailed information about their attitude states will be required. One important property of an object targeted for removal is its spin period, spin axis orientation and their change over time. Rotating objects will produce periodic brightness variations with frequencies which are related to the spin periods. Such a brightness variation over time is called a light curve. Collecting, but also processing light curves is challenging due to several reasons. Light curves may be undersampled, low frequency components due to phase angle and atmospheric extinction changes may be present, and beat frequencies may occur when the rotation period is close to a multiple of the sampling period. Depending on the method which is used to extract the frequencies, also method-specific properties have to be taken into account. The astronomical Institute of the University of Bern (AIUB) light curve database will be introduced, which contains more than 1,300 light curves acquired over more than seven years. We will discuss properties and reliability of different time series analysis methods tested and currently used by AIUB for the light curve processing. Extracted frequencies and reconstructed phases for some interesting targets, e.g. GLONASS satellites, for which also SLR data were available for the period confirmation, will be presented. Finally we will present the reconstructed phase and its evolution over time of a High-Area-to-Mass-Ratio (HAMR) object, which AIUB observed for several years.
Resumo:
Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. The problem faced in this framework is that of Multiple Target Tracking (MTT). In this context both the correct associations among the observations, and the orbits of the objects have to be determined. The complexity of the MTT problem is defined by its dimension S. Where S stands for the number of ’fences’ used in the problem, each fence consists of a set of observations that all originate from dierent targets. For a dimension of S ˃ the MTT problem becomes NP-hard. As of now no algorithm exists that can solve an NP-hard problem in an optimal manner within a reasonable (polynomial) computation time. However, there are algorithms that can approximate the solution with a realistic computational e ort. To this end an Elitist Genetic Algorithm is implemented to approximately solve the S ˃ MTT problem in an e cient manner. Its complexity is studied and it is found that an approximate solution can be obtained in a polynomial time. With the advent of improved sensors and a heightened interest in the problem of space debris, it is expected that the number of tracked objects will grow by an order of magnitude in the near future. This research aims to provide a method that can treat the correlation and orbit determination problems simultaneously, and is able to e ciently process large data sets with minimal manual intervention.
Resumo:
Today, there is little knowledge on the attitude state of decommissioned intact objects in Earth orbit. Observational means have advanced in the past years, but are still limited with respect to an accurate estimate of motion vector orientations and magnitude. Especially for the preparation of Active Debris Removal (ADR) missions as planned by ESA’s Clean Space initiative or contingency scenarios for ESA spacecraft like ENVISAT, such knowledge is needed. ESA's “Debris Attitude Motion Measurements and Modelling” project (ESA Contract No. 40000112447), led by the Astronomical Institute of the University of Bern (AIUB), addresses this problem. The goal of the project is to achieve a good understanding of the attitude evolution and the considerable internal and external effects which occur. To characterize the attitude state of selected targets in LEO and GTO, multiple observation methods are combined. Optical observations are carried out by AIUB, Satellite Laser Ranging (SLR) is performed by the Space Research Institute of the Austrian Academy of Sciences (IWF) and radar measurements and signal level determination are provided by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR). The In-Orbit Tumbling Analysis tool (ιOTA) is a prototype software, currently in development by Hyperschall Technologie Göttingen GmbH (HTG) within the framework of the project. ιOTA will be a highly modular software tool to perform short-(days), medium-(months) and long-term (years) propagation of the orbit and attitude motion (six degrees-of-freedom) of spacecraft in Earth orbit. The simulation takes into account all relevant acting forces and torques, including aerodynamic drag, solar radiation pressure, gravitational influences of Earth, Sun and Moon, eddy current damping, impulse and momentum transfer from space debris or micro meteoroid impact, as well as the optional definition of particular spacecraft specific influences like tank sloshing, reaction wheel behaviour, magnetic torquer activity and thruster firing. The purpose of ιOTA is to provide high accuracy short-term simulations to support observers and potential ADR missions, as well as medium-and long-term simulations to study the significance of the particular internal and external influences on the attitude, especially damping factors and momentum transfer. The simulation will also enable the investigation of the altitude dependency of the particular external influences. ιOTA's post-processing modules will generate synthetic measurements for observers and for software validation. The validation of the software will be done by cross-calibration with observations and measurements acquired by the project partners.
Resumo:
Any image processing object detection algorithm somehow tries to integrate the object light (Recognition Step) and applies statistical criteria to distinguish objects of interest from other objects or from pure background (Decision Step). There are various possibilities how these two basic steps can be realized, as can be seen in the different proposed detection methods in the literature. An ideal detection algorithm should provide high recognition sensitiv ity with high decision accuracy and require a reasonable computation effort . In reality, a gain in sensitivity is usually only possible with a loss in decision accuracy and with a higher computational effort. So, automatic detection of faint streaks is still a challenge. This paper presents a detection algorithm using spatial filters simulating the geometrical form of possible streaks on a CCD image. This is realized by image convolution. The goal of this method is to generate a more or less perfect match between a streak and a filter by varying the length and orientation of the filters. The convolution answers are accepted or rejected according to an overall threshold given by the ackground statistics. This approach yields as a first result a huge amount of accepted answers due to filters partially covering streaks or remaining stars. To avoid this, a set of additional acceptance criteria has been included in the detection method. All criteria parameters are justified by background and streak statistics and they affect the detection sensitivity only marginally. Tests on images containing simulated streaks and on real images containing satellite streaks show a very promising sensitivity, reliability and running speed for this detection method. Since all method parameters are based on statistics, the true alarm, as well as the false alarm probability, are well controllable. Moreover, the proposed method does not pose any extraordinary demands on the computer hardware and on the image acquisition process.
Resumo:
The population of space debris increased drastically during the last years. Collisions involving massive objects may produce large number of fragments leading to significantly growth of the space debris population. An effective remediation measure in order to stabilize the population in LEO, is therefore the removal of large, massive space debris. To remove these objects, not only precise orbits, but also more detailed information about their attitude states will be required. One important property of an object targeted for removal is its spin period and spin axis orientation. If we observe a rotating object, the observer sees different surface areas of the object which leads to changes in the measured intensity. Rotating objects will produce periodic brightness vari ations with frequencies which are related to the spin periods. Photometric monitoring is the real tool for remote diagnostics of the satellite rotation around its center of mass. This information is also useful, for example, in case of contingency. Moreover, it is also important to take into account the orientation of non-spherical body (e.g. space debris) in the numerical integration of its motion when a close approach with the another spacecr aft is predicted. We introduce the two databases of light curves: the AIUB data base, which contains about a thousand light curves of LEO, MEO and high-altitude debris objects (including a few functional objects) obtained over more than seven years, and the data base of the Astronomical Observatory of Odessa University (Ukraine), which contains the results of more than 10 years of photometric monitoring of functioning satellites and large space debris objects in low Earth orbit. AIUB used its 1m ZIMLAT telescope for all light curves. For tracking low-orbit satellites, the Astronomical Observatory of Odessa used the KT-50 telescope, which has an alt-azimuth mount and allows tracking objects moving at a high angular velocity. The diameter of the KT-50 main mirror is 0.5 m, and the focal length is 3 m. The Odessa's Atlas of light curves includes almost 5,5 thousand light curves for ~500 correlated objects from a time period of 2005-2014. The processing of light curves and the determination of the rotation period in the inertial frame is challenging. Extracted frequencies and reconstructed phases for some interesting targets, e.g. GLONASS satellites, for which also SLR data were available for confirmation, will be presented. The rotation of the Envisat satellite after its sudden failure will be analyzed. The deceleration of its rotation rate within 3 years is studied together with the attempt to determine the orientation of the rotation axis.