107 resultados para Peri-implantar anatomy
Resumo:
OBJECTIVES The aim of the present longitudinal study was to investigate bacterial colonization of the internal implant cavity and to evaluate a possible association with peri-implant bone loss. METHODS A total of 264 paper point samples were harvested from the intra-implant cavity of 66 implants in 26 patients immediately following implant insertion and after 3, 4, and 12 months. Samples were evaluated for Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, Treponema denticola, and Tannerella forsythia as well as total bacterial counts by real-time PCR. Bone loss was evaluated on standardized radiographs up to 25 months after implant insertion. For the statistical analysis of the data, mixed effects models were fitted. RESULTS There was an increase in the frequency of detection as well as in the mean counts of the selected bacteria over time. The evaluation of the target bacteria revealed a significant association of Pr. intermedia at 4 and 12 months with peri-implant bone loss at 25 months (4 months: P = 0.009; 12 months: P = 0.021). CONCLUSIONS The present study could demonstrate a progressive colonization by periodontopathogenic bacteria in the internal cavities of two-piece implants. The results suggest that internal colonization with Pr. intermedia was associated with peri-implant bone loss.
Resumo:
OBJECTIVES To systematically review the available literature on the influence of dental implant placement and loading protocols on peri-implant innervation. MATERIAL AND METHODS The database MEDLINE, Cochrane, EMBASE, Web of Science, LILACS, OpenGrey and hand searching were used to identify the studies published up to July 2013, with a populations, exposures and outcomes (PEO) search strategy using MeSH keywords, focusing on the question: Is there, and if so, what is the effect of time between tooth extraction and implant placement or implant loading on neural fibre content in the peri-implant hard and soft tissues? RESULTS Of 683 titles retrieved based on the standardized search strategy, only 10 articles fulfilled the inclusion criteria, five evaluating the innervation of peri-implant epithelium, five elucidating the sensory function in peri-implant bone. Three included studies were considered having a methodology of medium quality and the rest were at low quality. All those papers reported a sensory innervation around osseointegrated implants, either in the bone-implant interface or peri-implant epithelium, which expressed a particular innervation pattern. Compared to unloaded implants or extraction sites without implantation, a significant higher density of nerve fibres around loaded dental implants was confirmed. CONCLUSIONS To date, the published literature describes peri-implant innervation with a distinct pattern in hard and soft tissues. Implant loading seems to increase the density of nerve fibres in peri-implant tissues, with insufficient evidence to distinguish between the innervation patterns following immediate and delayed implant placement and loading protocols. Variability in study design and loading protocols across the literature and a high risk of bias in the studies included may contribute to this inconsistency, revealing the need for more uniformity in reporting, randomized controlled trials, longer observation periods and standardization of protocols.