108 resultados para NEPHROLOGY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES Evaluation of glomerular hyperfiltration (GH) is difficult; the variable reported definitions impede comparisons between studies. A clear and universal definition of GH would help in comparing results of trials aimed at reducing GH. This study assessed how GH is measured and defined in the literature. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Three databases (Embase, MEDLINE, CINAHL) were systematically searched using the terms "hyperfiltration" or "glomerular hyperfiltration". All studies reporting a GH threshold or studying the effect of a high GFR in a continuous manner against another outcome of interest were included. RESULTS The literature search was performed from November 2012 to February 2013 and updated in August 2014. From 2013 retrieved studies, 405 studies were included. Threshold use to define GH was reported in 55.6% of studies. Of these, 88.4% used a single threshold and 11.6% used numerous thresholds adapted to participant sex or age. In 29.8% of the studies, the choice of a GH threshold was not based on a control group or literature references. After 2004, the use of GH threshold use increased (P<0.001), but the use of a control group to precisely define that GH threshold decreased significantly (P<0.001); the threshold did not differ among pediatric, adult, or mixed-age studies. The GH threshold ranged from 90.7 to 175 ml/min per 1.73 m(2) (median, 135 ml/min per 1.73 m(2)). CONCLUSION Thirty percent of studies did not justify the choice of threshold values. The decrease of GFR in the elderly was rarely considered in defining GH. From a methodologic point of view, an age- and sex-matched control group should be used to define a GH threshold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Estimation of glomerular filtration rate (eGFR) using a common formula for both adult and pediatric populations is challenging. Using inulin clearances (iGFRs), this study aims to investigate the existence of a precise age cutoff beyond which the Modification of Diet in Renal Disease (MDRD), the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), or the Cockroft-Gault (CG) formulas, can be applied with acceptable precision. Performance of the new Schwartz formula according to age is also evaluated. METHOD We compared 503 iGFRs for 503 children aged between 33 months and 18 years to eGFRs. To define the most precise age cutoff value for each formula, a circular binary segmentation method analyzing the formulas' bias values according to the children's ages was performed. Bias was defined by the difference between iGFRs and eGFRs. To validate the identified cutoff, 30% accuracy was calculated. RESULTS For MDRD, CKD-EPI and CG, the best age cutoff was ≥14.3, ≥14.2 and ≤10.8 years, respectively. The lowest mean bias and highest accuracy were -17.11 and 64.7% for MDRD, 27.4 and 51% for CKD-EPI, and 8.31 and 77.2% for CG. The Schwartz formula showed the best performance below the age of 10.9 years. CONCLUSION For the MDRD and CKD-EPI formulas, the mean bias values decreased with increasing child age and these formulas were more accurate beyond an age cutoff of 14.3 and 14.2 years, respectively. For the CG and Schwartz formulas, the lowest mean bias values and the best accuracies were below an age cutoff of 10.8 and 10.9 years, respectively. Nevertheless, the accuracies of the formulas were still below the National Kidney Foundation Kidney Disease Outcomes Quality Initiative target to be validated in these age groups and, therefore, none of these formulas can be used to estimate GFR in children and adolescent populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity and diets rich in uric acid-raising components appear to account for the increased prevalence of hyperuricemia in Westernized populations. Prevalence rates of hypertension, diabetes mellitus, CKD, and cardiovascular disease are also increasing. We used Mendelian randomization to examine whether uric acid is an independent and causal cardiovascular risk factor. Serum uric acid was measured in 3315 patients of the Ludwigshafen Risk and Cardiovascular Health Study. We calculated a weighted genetic risk score (GRS) for uric acid concentration based on eight uric acid-regulating single nucleotide polymorphisms. Causal odds ratios and causal hazard ratios (HRs) were calculated using a two-stage regression estimate with the GRS as the instrumental variable to examine associations with cardiometabolic phenotypes (cross-sectional) and mortality (prospectively) by logistic regression and Cox regression, respectively. Our GRS was not consistently associated with any biochemical marker except for uric acid, arguing against pleiotropy. Uric acid was associated with a range of prevalent diseases, including coronary artery disease. Uric acid and the GRS were both associated with cardiovascular death and sudden cardiac death. In a multivariate model adjusted for factors including medication, causal HRs corresponding to each 1-mg/dl increase in genetically predicted uric acid concentration were significant for cardiovascular death (HR, 1.77; 95% confidence interval, 1.12 to 2.81) and sudden cardiac death (HR, 2.41; 95% confidence interval, 1.16 to 5.00). These results suggest that high uric acid is causally related to adverse cardiovascular outcomes, especially sudden cardiac death.