145 resultados para Mitochondrial fission


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Choline is an essential nutrient for eukaryotic cells, where it is used as precursor for the synthesis of choline-­containing phospholipids, such as phosphatidylcholine (PC). Our experiments showed – for the first time – that Trypanosoma brucei, the causative agent of human African sleeping sickness, is able to take up choline from the culture medium to use for PC synthesis, indicating that trypanosomes express a transporter for choline at the plasma membrane. Further characterization in procyclic and bloodstream forms revealed that choline uptake is saturable and can be inhibited by HC-3, a known inhibitor of choline uptake in mammalian cells. To obtain additional insights on choline uptake and metabolism, we investigated the effects of choline-analogs that were previously shown to be toxic for T. brucei parasites in culture. Interestingly, we found that all analogs tested effectively inhibited choline uptake into both bloodstream and procyclic form parasites. Subsequently, selected compounds were used to search for possible candidate genes encoding choline transporters in T. brucei, using an RNAi library in bloodstream forms. We identified a protein belonging to the mitochondrial carrier family, previously annotated as TbMCP14, as prime candidate. Down‐regulation of TbMCP14 by RNAi prevented drug-­induced loss of mitochondrial membrane potential and conferred 8­‐fold resistance of T. brucei bloodstream forms to choline analogs. Conversely, over‐expression of the carrier increased parasite susceptibility more than 13-­fold. However, subsequent experiments demonstrated that TbMCP14 was not involved in metabolism of choline. Instead, growth curves in glucose‐depleted medium using RNAi or knock‐out parasites suggested that TbMCP14 is involved in metabolism of amino acids for energy production. Together, our data demonstrate that the identified member of the mitochondrial carrier family is involved in drug uptake into the mitochondrion and has a vital function in energy production in T. brucei.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The X‐linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor, best known for its anti‐apoptotic function in cancer. During apoptosis, XIAP is antagonized by SMAC, which is released from the mitochondria upon caspase‐mediated activation of BID. Recent studies suggest that XIAP is involved in immune signaling. Here, we explore XIAP as an important mediator of an immune response against the enteroinvasive bacterium Shigella flexneri, both in vitro and in vivo. Our data demonstrate for the first time that Shigella evades the XIAP‐mediated immune response by inducing the BID‐dependent release of SMAC from the mitochondria. Unlike apoptotic stimuli, Shigella activates the calpain‐dependent cleavage of BID to trigger the release of SMAC, which antagonizes the inflammatory action of XIAP without inducing apoptosis. Our results demonstrate how the cellular death machinery can be subverted by an invasive pathogen to ensure bacterial colonization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of what we know about mitochondrial biogenesis stems from work in yeast and mammals, which are quite closely related. To understand the conserved features of mitochondria and the evolutionary forces that shaped it, it is important to study a more diverse group of eukaryotes. The parasitic protozoan Trypanosoma brucei and its relatives are excellent systems to do so, since they appear to have diverged from other eukaryotes very early in evolution. This is reflected in a number of unique and extreme features in their mitochondrial biology, including a single continuous mitochondrion that contains a one unit mitochondrial genome that is physically connected across the two membranes with the basal body of the flagellum. Moreover, many mitochondrial transcripts have to be extensively edited in order to become functional mRNAs and organellar translation requires extensive import of cytosolic tRNAs. In my talk I will focus on the discovery and characterization of the elusive mitochondrial protein import system of the mitochondrial outer membrane of trypanosomes. In addition I will present data on a central outer membrane component of the mitochondrial genome inheritance system of T. brucei and compare it to the better characterized system of yeast. - I hope that I can convince you in my talk, that a better understanding of the mitochondrial biology in T. brucei will provide insights into both fundamentally conserved and fundamentally diverged aspects of mitochondrial biogenesis and thus of the evolutionary history of mitochondria in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) have been implemented in the etiology of pulmonary fibrosis (PF) in systemic sclerosis. In the bleomycin model, we evaluated the role of acquired mutations in mitochondrial DNA (mtDNA) and respiratory chain defects as a trigger of ROS formation and fibrogenesis. Adult male Wistar rats received a single intratracheal instillation of bleomycin and their lungs were examined at different time points. Ashcroft scores, collagen and TGFβ1 levels documented a delayed onset of PF by day 14. In contrast, increased malon dialdehyde as a marker of ROS formation was detectable as early as 24 hours after bleomycin instillation and continued to increase. At day 7, lung tissue acquired significant amounts of mtDNA deletions, translating into a significant dysfunction of mtDNA-encoded, but not nucleus-encoded respiratory chain subunits. mtDNA deletions and markers of mtDNA-encoded respiratory chain dysfunction significantly correlated with pulmonary TGFβ1 concentrations and predicted PF in a multivariate model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fission fragment mass distributions were measured in heavy-ion induced fission of 238U. The mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and quasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model for the reactions of 30Si+238U and 34S+238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections of 263,264Sg and 267,268Hs, produced by 30Si+238U and 34S+238U, respectively. It is also suggested that sub-barrier energies can be used for heavy element synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/AIM To investigate the underlying pathomechanism in a 33-year-old female Caucasian patient presenting with chronic progressive external ophthalmoplegia (CPEO) plus symptoms. METHODS Histochemical analysis of skeletal muscle and biochemical measurements of individual oxidative phosphorylation (OXPHOS) complexes. Genetic analysis of mitochondrial DNA in various tissues with subsequent investigation of single muscle fibres for correlation of mutational load. RESULTS The patient's skeletal muscle showed 20% of cytochrome c oxidase-negative fibres and 8% ragged-red fibres. Genetic analysis of the mitochondrial DNA revealed a novel point mutation in the mitochondrial tRNA(Ile) (MTTI) gene at position m.4282G>A. The heteroplasmy was determined in blood, buccal cells and muscle by restriction fragment length polymorphism (RFLP) combined with a last fluorescent cycle. The total mutational load was 38% in skeletal muscle, but was not detectable in blood or buccal cells of the patient. The phenotype segregated with the mutational load as determined by analysis of single cytochrome c oxidase-negative/positive fibres by laser capture microdissection and subsequent LFC-RFLP. CONCLUSIONS We describe a novel MTTI transition mutation at nucleotide position m.4282G>A associated with a CPEO plus phenotype. The novel variant at position m.4282G>A disrupts the middle bond of the D-stem of the tRNA(Ile) and is highly conserved. The conservation and phenotype-genotype segregation strongly suggest pathogenicity and is in good agreement with the MTTI gene being frequently associated with CPEO. This novel variant broadens the spectrum of MTTI mutations causing CPEO.