141 resultados para Mitochondrial Pathology
Resumo:
Mitochondria cannot form de novo but require mechanisms allowing their inheritance to daughter cells. In contrast to most other eukaryotes Trypanosoma brucei has a single mitochondrion whose single-unit genome is physically connected to the flagellum. Here we identify a β-barrel mitochondrial outer membrane protein, termed tripartite attachment complex 40 (TAC40), that localizes to this connection. TAC40 is essential for mitochondrial DNA inheritance and belongs to the mitochondrial porin protein family. However, it is not specifically related to any of the three subclasses of mitochondrial porins represented by the metabolite transporter voltage-dependent anion channel (VDAC), the protein translocator of the outer membrane 40 (TOM40), or the fungi-specific MDM10, a component of the endoplasmic reticulum–mitochondria encounter structure (ERMES). MDM10 and TAC40 mediate cellular architecture and participate in transmembrane complexes that are essential for mitochondrial DNA inheritance. In yeast MDM10, in the context of the ERMES, is postulated to connect the mitochondrial genomes to actin filaments, whereas in trypanosomes TAC40 mediates the linkage of the mitochondrial DNA to the basal body of the flagellum. However, TAC40 does not colocalize with trypanosomal orthologs of ERMES components and, unlike MDM10, it regulates neither mitochondrial morphology nor the assembly of the protein translocase. TAC40 therefore defines a novel subclass of mitochondrial porins that is distinct from VDAC, TOM40, and MDM10. However, whereas the architecture of the TAC40-containing complex in trypanosomes and the MDM10-containing ERMES in yeast is very different, both are organized around a β-barrel protein of the mitochondrial porin family that mediates a DNA–cytoskeleton linkage that is essential for mitochondrial DNA inheritance.
Resumo:
Hint2, one of the five members of the superfamily of the histidine triad AMP-lysine hydrolase proteins, is expressed in mitochondria of various cell types. In human adrenocarcinoma cells, Hint2 modulates Ca2+ handling by mitochondria. As Hint2 is highly expressed in hepatocytes, we investigated if this protein affects Ca2+ dynamics in this cell type. We found that in hepatocytes isolated from Hint2−/− mice, the frequency of Ca2+ oscillations induced by 1 μM noradrenaline was 150% higher than in the wild-type. Using spectrophotometry, we analyzed the rates of Ca2+ pumping in suspensions of mitochondria prepared from hepatocytes of either wild-type or Hint2−/− mice; we found that Hint2 accelerates Ca2+ pumping into mitochondria. We then resorted to computational modeling to elucidate the possible molecular target of Hint2 that could explain both observations. On the basis of a detailed model for mitochondrial metabolism proposed in another study, we identified the respiratory chain as the most probable target of Hint2. We then used the model to predict that the absence of Hint2 leads to a premature opening of the mitochondrial permeability transition pore in response to repetitive additions of Ca2+ in suspensions of mitochondria. This prediction was then confirmed experimentally.
Resumo:
The emergent discipline of metabolomics has attracted considerable research effort in hepatology. Here we review the metabolomic data for non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), alcoholic liver disease (ALD), hepatitis B and C, cholecystitis, cholestasis, liver transplantation, and acute hepatotoxicity in animal models. A metabolomic window has permitted a view into the changing biochemistry occurring in the transitional phases between a healthy liver and hepatocellular carcinoma or cholangiocarcinoma. Whether provoked by obesity and diabetes, alcohol use or oncogenic viruses, the liver develops a core metabolomic phenotype (CMP) that involves dysregulation of bile acid and phospholipid homeostasis. The CMP commences at the transition between the healthy liver (Phase 0) and NAFLD/NASH, ALD or viral hepatitis (Phase 1). This CMP is maintained in the presence or absence of cirrhosis (Phase 2) and whether or not either HCC or CCA (Phase 3) develops. Inflammatory signalling in the liver triggers the appearance of the CMP. Many other metabolomic markers distinguish between Phases 0, 1, 2 and 3. A metabolic remodelling in HCC has been described but metabolomic data from all four Phases demonstrate that the Warburg shift from mitochondrial respiration to cytosolic glycolysis foreshadows HCC and may occur as early as Phase 1. The metabolic remodelling also involves an upregulation of fatty acid β-oxidation, also beginning in Phase 1. The storage of triglycerides in fatty liver provides high energy-yielding substrates for Phases 2 and 3 of liver pathology. The metabolomic window into hepatobiliary disease sheds new light on the systems pathology of the liver.
Resumo:
OBJECTIVE To analyse the results after elective open total aortic arch replacement. METHODS We analysed 39 patients (median age 63 years, median logistic EuroSCORE 18.4) who underwent elective open total arch replacement between 2005 and 2012. RESULTS In-hospital mortality was 5.1% (n = 2) and perioperative neurological injury was 12.8% (n = 5). The indication for surgery was degenerative aneurysmal disease in 59% (n = 23) and late aneurysmal formation following previous surgery of type A aortic dissection in 35.9% (n = 14); 5.1% (n = 2) were due to anastomotical aneurysms after prior ascending repair. Fifty-nine percent (n = 23) of the patients had already undergone previous proximal thoracic aortic surgery. In 30.8% (n = 12) of them, a conventional elephant trunk was added to total arch replacement, in 28.2% (n = 11), root replacement was additionally performed. Median hypothermic circulatory arrest time was 42 min (21-54 min). Selective antegrade cerebral perfusion was used in 95% (n = 37) of patients. Median follow-up was 11 months [interquartile range (IQR) 1-20 months]. There was no late death and no need for reoperation during this period. CONCLUSIONS Open total aortic arch replacement shows very satisfying results. The number of patients undergoing total arch replacement as a redo procedure and as a part of a complex multisegmental aortic pathology is high. Future strategies will have to emphasize neurological protection in extensive simultaneous replacement of the aortic arch and adjacent segments.
Resumo:
Background The relevance of mitochondrial dysfunction as to pathogenesis of multiple organ dysfunction and failure in sepsis is controversial. This focused review evaluates the evidence for impaired mitochondrial function in sepsis. Design Review of original studies in experimental sepsis animal models and clinical studies on mitochondrial function in sepsis. In vitro studies solely on cells and tissues were excluded. PubMed was searched for articles published between 1964 and July 2012. Results Data from animal experiments (rodents and pigs) and from clinical studies of septic critically ill patients and human volunteers were included. A clear pattern of sepsis-related changes in mitochondrial function is missing in all species. The wide range of sepsis models, length of experiments, presence or absence of fluid resuscitation and methods to measure mitochondrial function may contribute to the contradictory findings. A consistent finding was the high variability of mitochondrial function also in control conditions and between organs. Conclusion Mitochondrial function in sepsis is highly variable, organ specific and changes over the course of sepsis. Patients who will die from sepsis may be more affected than survivors. Nevertheless, the current data from mostly young and otherwise healthy animals does not support the view that mitochondrial dysfunction is the general denominator for multiple organ failure in severe sepsis and septic shock. Whether this is true if underlying comorbidities are present, especially in older patients, should be addressed in further studies.
Resumo:
Kinetoplastids are defined by the unique organization of their mitochondrial DNA (kDNA). It forms a highly concatenated DNA network that is linked to the basal body of the flagellum by the tripartite attachment complex (TAC). The TAC encompasses intra and extramitochondrial filaments and a highly differentiated region of the two mitochondrial membranes. Here we identify and characterize a mitochondrial outer membrane protein of Trypanosoma brucei that is predominantly localized in the TAC. The protein is essential for growth in both life cycle stages. Immunofluorescence shows that ablation of the protein does not affect kDNA replication but abolishes the segregation of the replicated kDNA network causing rapid loss of kDNA. Besides its role in kDNA maintenance in vivo and in vitro experiments show that the protein is involved in mitochondrial protein import and that it interacts with a recently discovered protein import factor. RNAi experiments in a T. brucei cell line in which the kDNA is dispensable suggest that the essential function is linked to kDNA maintenance. Bioinformatic analysis shows that the studied outer membrane protein has beta-barrel topology and that it belongs to the mitochondrial porin family comprising VDAC, Tom40 and Mdm10. Interestingly, Mdm10 has sofar only been found in yeast. Ist function in protein import and mitochondrial DNA maintenance suggests that the protein in our study is the functional homologue of Mdm10. Thus, the TAC – a defining structure of Kinetoplastids – contains a conserved protein which in yeast and trypanosomes performs the same function. Our study therefore provides an example that trypanosomal biology, rather than being unique, often simply represents a more extreme manifestation of a conserved biological concept.
Resumo:
Most of what we know about mitochondrial biogenesis stems from work in yeast and mammals, which are quite closely related. To understand the conserved features of mitochondria and the evolutionary forces that shaped it, it is important to study a more diverse group of eukaryotes. The parasitic protozoan Trypanosoma brucei and its relatives are excellent systems to do so, since they appear to have diverged from other eukaryotes very early in evolution. This is reflected in a number of unique and extreme features in their mitochondrial biology, including a single continuous mitochondrion that contains a one unit mitochondrial genome that is physically connected across the two membranes with the basal body of the flagellum. Moreover, many mitochondrial transcripts have to be extensively edited in order to become functional mRNAs and organellar translation requires extensive import of cytosolic tRNAs. In my talk I will focus on the discovery and characterization of the elusive mitochondrial protein import system of the mitochondrial outer membrane of trypanosomes. In addition I will present data on a central outer membrane component of the mitochondrial genome inheritance system of T. brucei and compare it to the better characterized system of yeast. - I hope that I can convince you in my talk, that a better understanding of the mitochondrial biology in T. brucei will provide insights into both fundamentally conserved and fundamentally diverged aspects of mitochondrial biogenesis and thus of the evolutionary hstory of mitochondria in general.
Resumo:
African trypanosomes, the causative agent of Human African Trypanosomiasis (HAT) are among the earliest diverging eukaryotes that have bona fide mitochondria capable of oxidative phosphorylation. The mitochondrial outer membrane (MOM) of T. brucei is essentially unchartered territory. The beta barrel membrane proteins VDAC, Sam50 and archaic TOM are the only MOM proteins that have been characterized so far. Using biochemical fractionation and correlated protein abundance-profiling we were able to raise the protein inventory of the MOM. Of the 82 candidate proteins two-thirds have never been associated with mitochondria before. The function of 42 proteins remains unknown. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three MOM candidate proteins of unknown function resulted in a collapse of the network-like mitochondrion of insect-stage parasites and therefore directly or indirectly are involved in the regulation of mitochondrial morphology in T. brucei.
Resumo:
The mitochondrial outer membrane (MOM) separates the mitochondria from the cytoplasm, serving both as a barrier and as a gateway. Protein complexes — believed to be universally conserved in all eukaryotes — reside in the MOM to orchestrate and control metabolite exchange, lipid metabolism and uptake of biopolymers such as protein and RNA. African trypanosomes are the causative agent of the sleeping sickness in humans. The parasites are among the earliest diverging eukaryotes that have bona fide mitochondria capable of oxidative phosphorylation. Trypanosomes have unique mitochondrial biology that concerns their mitochondrial metabolism and their unusual mitochondrial morphology that differs to great extent between life stages. Another striking feature is the organization of the mitochondrial genome that does not encode any tRNA genes, thus all tRNAs needed for mitochondrial translation have to be imported. However, the MOM of T. brucei is essentially unchartered territory. It lacks a canonical protein import machinery and facilitation of tRNA translocation remains completely elusive. Using biochemical fractionation and label-free quantitative mass spectrometry for correlated protein abundance-profiling we were able to identify a cluster of 82 candidate proteins that can be localized to the trypanosomal MOM with high confidence. This enabled us to identify a highly unusual, potentially archaic protein import machinery that might also transport tRNAs. Moreover, two-thirds of the identified polypeptides present on the MOM have never been associated with mitochondria before. 40 proteins share homology with proteins of known functions. The function of 42 proteins remains unknown. 11 proteins are essential for the disease-causing bloodstream form of T. brucei and therefore may be exploited as novel drug targets. A comparison with the outer membrane proteome of yeast defines a set of 17 common proteins that are likely present in the MOM of all eukaryotes. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three outer membrane proteins of unknown function resulted in a collapse of the network-like mitochondrion of insect-stage parasites and therefore directly or indirectly are involved in the regulation of mitochondrial morphology.
Resumo:
The mitochondrial outer membrane (MOM) separates the mitochondria from the cytoplasm, serving both as a barrier and as a gateway. Protein complexes residing in the MOM orchestrate protein and tRNA import, metabolite exchange and lipid metabolism. African trypanosomes are among the earliest diverging eukaryotes that have bona fide mitochondria capable of oxidative phosphorylation. The MOM of T. brucei is essentially unchartered territory. It lacks a canonical TOM-complex and proteins are imported across the MOM using ATOM, which is related to both Tom40 and to the bacterial Omp85-protein family. The beta barrel membrane proteins ATOM, VDAC and Sam50 are the only MOM proteins that have been characterized in T. brucei so far. Using biochemical fractionation and correlated protein abundance-profiling we were able to identify a cluster of 82 candidate proteins that can be localized to the trypanosomal MOM with high confidence Two-thirds of these polypeptides have never been associated with mitochondria before. 40 proteins share homology with proteins of known functions. The function of 42 proteins remains unknown. 11 proteins are essential for the disease-causing bloodstream form of T. brucei and therefore may be exploited as novel drug targets. A comparison with the outer membrane proteome of yeast defines a set of 17 common proteins that are likely present in the MOM of all eukaryotes. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three outer membrane proteins of unknown function resulted in a collapse of the network-like mitochondrion of procyclic cells and therefore directly or indirectly are involved in the regulation of mitochondrial morphology in T. brucei.