156 resultados para Mesenchymal stem cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a time-course comparison of human articular chondrocytes (HAC) and bone marrow-derived mesenchymal stem cells (MSC) immunophenotype was performed in order to determine similarities/differences between both cell types during monolayer culture, and to identify HAC surface markers indicative of dedifferentiation. Our results show that dedifferentiated HAC can be distinguished from MSC by combining CD14, CD90, and CD105 expression, with dedifferentiated HAC being CD14+/CD90bright/CD105dim and MSC being CD14-/CD90dim/CD105bright. Surface markers on MSC showed little variation during the culture, whereas HAC showed upregulation of CD90, CD166, CD49c, CD44, CD10, CD26, CD49e, CD151, CD51/61, and CD81, and downregulation of CD49a, CD54, and CD14. Thus, dedifferentiated HAC appear as a bona fide cell population rather than a small population of MSC amplified during monolayer culture. While most of the HAC surface markers showed major changes at the beginning of the culture period (Passage 1-2), CD26 was upregulated and CD49a downregulated at later stages of the culture (Passage 3-4). To correlate changes in HAC surface markers with changes in extracellular matrix gene expression during monolayer culture, CD14 and CD90 mRNA levels were combined into a new differentiation index and compared with the established differentiation indices based on the ratios of mRNA levels of collagen type II to I (COL2/COL1) and of aggrecan to versican (AGG/VER). A correlation of CD14/CD90 ratio at the mRNA and protein level with the AGG/VER ratio during HAC dedifferentiation in monolayer culture validated CD14/CD90 as a new membrane and mRNA based HAC differentiation index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To describe the use of stem cells (SCs) for regeneration of retinal degenerations. Regenerative medicine intends to provide therapies for severe injuries or chronic diseases where endogenous repair does not sufficiently restore the tissue. Pluripotent SCs, with their capacity to give rise to specialized cells, are the most promising candidates for clinical application. Despite encouraging results, a combination with up-to-date tissue engineering might be critical for ultimate success. DESIGN: The focus is on the use of SCs for regeneration of retinal degenerations. Cell populations include embryonic, neural, and bone marrow-derived SCs, and engineered grafts will also be described. RESULTS: Experimental approaches have successfully replaced damaged photoreceptors and retinal pigment epithelium using endogenous and exogenous SCs. CONCLUSIONS: Stem cells have the potential to significantly impact retinal regeneration. A combination with bioengineering may bear even greater promise. However, ethical and scientific issues have yet to be solved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines. Immunomodulatory properties were studied on activated peripheral blood mononuclear cells (PBMCs). The immuno-profile of fetal bone cells was further investigated at the gene expression level. Fetal bone cells and adult MSCs were positive for Stro-1, alkaline phosphatase, CD10, CD44, CD54, and beta2-microglobulin, but human leukocyte antigen (HLA)-I and CD80 were less present than on adult osteoblasts. All cells were negative for HLA-II. Treatment with recombinant human interferon gamma increased the presence of HLA-I in adult cells much more than in fetal cells. In the presence of activated PBMCs, fetal cells had antiproliferative effects, although with patterns not always comparable with those of adult MSCs and osteoblasts. Because of the immunological profile, and with their more-differentiated phenotype than of stem cells, fetal bone cells present an interesting potential for allogeneic cell source in tissue-engineering applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue turnover, regeneration, and repair take place throughout life. Stem cells are key players in these processes. The characteristics and niches of the stem cell populations in different tissues, and even in related tissues, vary extensively. In this review, stem cell differentiation and stem cell contribution to tissue maintenance and regeneration is compared in the epithelia of the skin, the cornea, the lung, and the intestine. A hierarchical model for adult stem cells is proposed, based on the potency of stem cell subpopulations in a specific tissue. The potency is defined in terms of the maintenance, the repair, and the regeneration of the tissue. The niche supplies cues to maintain the specific stem cell potency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: According to recent reports, the synovial membrane may contain mesenchymal stem cells with the potential to differentiate into chondrocytes under appropriate conditions. In order to assess the usefulness of synovium-derived progenitor cells for the purposes of cartilage tissue engineering, we explored their requirements for the expression of chondrocyte-specific genes after expansion in vitro. DESIGN: Mesenchymal progenitor cells were isolated from the synovial membranes of bovine shoulder joints and expanded in two-dimensions on plastic surfaces. They were then seeded either as micromass cultures or as single cells within alginate gels, which were cultured in serum-free medium. Under these three-dimensional conditions, chondrogenesis is known to be supported and maintained. Cell cultures were exposed either to bone morphogenetic protein-2 (BMP-2) or to isoforms of transforming growth factor-beta (TGF-beta). The levels of mRNA for Sox9, collagen types I and II and aggrecan were determined by RT-PCR. RESULTS: When transferred to alginate gel cultures, the fibroblast-like synovial cells assumed a rounded form. BMP-2, but not isoforms of TGF-beta, stimulated, in a dose-dependent manner, the production of messenger RNAs (mRNAs) for Sox9, type II collagen and aggrecan. Under optimal conditions, the expression levels of cartilage-specific genes were comparable to those within cultured articular cartilage chondrocytes. However, in contrast to cultured articular cartilage chondrocytes, synovial cells exposed to BMP-2 continued to express the mRNA for alpha1(I) collagen. CONCLUSIONS: This study demonstrates that bovine synovium-derived mesenchymal progenitor cells can be induced to express chondrocyte-specific genes. However, the differentiation process is not complete under the chosen conditions. The stimulation conditions required for full transformation must now be delineated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian inner ear has very limited ability to regenerate lost sensory hair cells. This deficiency becomes apparent when hair cell loss leads to hearing loss as a result of either ototoxic insult or the aging process. Coincidently, with this inability to regenerate lost hair cells, the adult cochlea does not appear to harbor cells with a proliferative capacity that could serve as progenitor cells for lost cells. In contrast, adult mammalian vestibular sensory epithelia display a limited ability for hair cell regeneration, and sphere-forming cells with stem cell features can be isolated from the adult murine vestibular system. The neonatal inner ear, however, does harbor sphere-forming stem cells residing in cochlear and vestibular tissues. Here, we provide protocols to isolate sphere-forming stem cells from neonatal vestibular and cochlear sensory epithelia as well as from the spiral ganglion. We further describe procedures for sphere propagation, cell differentiation, and characterization of inner ear cell types derived from spheres. Sphere-forming stem cells from the mouse inner ear are an important tool for the development of cellular replacement strategies of damaged inner ears and are a bona fide progenitor cell source for transplantation studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleus pulposus (NP) regeneration by the application of injectable cell-embedded hydrogels is an appealing approach for tissue engineering. We investigated a thermo-reversible hydrogel (TR-HG), based on a modified polysaccharide with a thermo-reversible polyamide [poly(N-isopropylacrylamide), pNIPAM], which is made to behave as a liquid at room temperature and hardens at > 32 °C. In order to test the hydrogel, a papain-induced bovine caudal disc degeneration model (PDDM), creating a cavity in the NP, was employed. Human mesenchymal stem cells (hMSCs) or autologous bovine NP cells (bNPCs) were seeded in TR-HG; hMSCs were additionally preconditioned with rhGDF-5 for 7 days. Then, TR-HG was reversed to a fluid and the cell suspension injected into the PDDM and kept under static loading for 7 days. Experimental design was: (D1) fresh disc control + PBS injection; (D2) PDDM + PBS injection; (D3) PDDM + TR-HG (material control); (D4) PDDM + TR-HG + bNPCs; (D5) PDDM + TR-HG + hMSCs. Magnetic resonance imaging performed before and after loading, on days 9 and 16, allowed imaging of the hydrogel-filled PDDM and assessment of disc height and volume changes. In gel-injected discs the NP region showed a major drop in volume and disc height during culture under static load. The RT–PCR results of injected hMSCs showed significant upregulation of ACAN, COL2A1, VCAN and SOX9 during culture in the disc cavity, whereas the gene expression profile of NP cells remained unchanged. The cell viability of injected cells (NPCs or hMSCs) was maintained at over 86% in 3D culture and dropped to ~72% after organ culture. Our results underline the need for load-bearing hydrogels that are also cyto-compatible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stromal cells (MSCs) have a multilineage differentiation potential and provide immunosuppressive and antimicrobial functions. Murine as well as human MSCs restrict the proliferation of T cells. However, species-specific differences in the underlying molecular mechanisms have been described. Here, we analyzed the antiparasitic effector mechanisms active in murine MSCs. Murine MSCs, in contrast to human MSCs, could not restrict the growth of a highly virulent strain of Toxoplasma gondii (BK) after stimulation with IFN-γ. However, the growth of a type II strain of T. gondii (ME49) was strongly inhibited by IFN-γ-activated murine MSCs. Immunity-related GTPases (IRGs) as well as guanylate-binding proteins (GBPs) contributed to this antiparasitic effect. Further analysis showed that IFN-γ-activated mMSCs also inhibit the growth of Neospora caninum, a parasite belonging to the apicomplexan group as well. Detailed studies with murine IFN-γ-activated MSC indicated an involvement in IRGs like Irga6, Irgb6 and Irgd in the inhibition of N. caninum. Additional data showed that, furthermore, GBPs like mGBP1 and mGBP2 could have played a role in the anti-N. caninum effect of murine MSCs. These data underline that MSCs, in addition to their regenerative and immunosuppressive activity, function as antiparasitic effector cells as well. However, IRGs are not present in the human genome, indicating a species-specific difference in anti-T. gondii and anti-N. caninum effect between human and murine MSCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasia arising from the oncogenic break point cluster region/Abelson murine leukemia viral oncogene homolog 1 translocation in hematopoietic stem cells (HSCs), resulting in a leukemia stem cell (LSC). Curing CML depends on the eradication of LSCs. Unfortunately, LSCs are resistant to current treatment strategies. The host’s immune system is thought to contribute to disease control, and several immunotherapy strategies are under investigation. However, the interaction of the immune system with LSCs is poorly defined. In the present study, we use a murine CML model to show that LSCs express major histocompatibility complex (MHC) and co-stimulatory molecules and are recognized and killed by leukemia-specific CD8+ effector CTLs in vitro. In contrast, therapeutic infusions of effector CTLs into CML mice in vivo failed to eradicate LSCs but, paradoxically, increased LSC numbers. LSC proliferation and differentiation was induced by CTL-secreted IFN-γ. Effector CTLs were only able to eliminate LSCs in a situation with minimal leukemia load where CTL-secreted IFN-γ levels were low. In addition, IFN-γ increased proliferation and colony formation of CD34+ stem/progenitor cells from CML patients in vitro. Our study reveals a novel mechanism by which the immune system contributes to leukemia progression and may be important to improve T cell–based immunotherapy against leukemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human pluripotent stem cells are a powerful tool for modeling brain development and disease. The human cortex is composed of two major neuronal populations: projection neurons and local interneurons. Cortical interneurons comprise a diverse class of cell types expressing the neurotransmitter GABA. Dysfunction of cortical interneurons has been implicated in neuropsychiatric diseases, including schizophrenia, autism, and epilepsy. Here, we demonstrate the highly efficient derivation of human cortical interneurons in an NKX2.1::GFP human embryonic stem cell reporter line. Manipulating the timing of SHH activation yields three distinct GFP+ populations with specific transcriptional profiles, neurotransmitter phenotypes, and migratory behaviors. Further differentiation in a murine cortical environment yields parvalbumin- and somatostatin-expressing neurons that exhibit synaptic inputs and electrophysiological properties of cortical interneurons. Our study defines the signals sufficient for modeling human ventral forebrain development in vitro and lays the foundation for studying cortical interneuron involvement in human disease pathology.