137 resultados para Mark-release-recapture
Resumo:
OBJECTIVE Although extended-release (XR) formulations are recognized to bear some risk of pharmacobezoar formation in overdose, there are no previously documented reports of this phenomenon with quetiapine. We describe nine cases of pharmacobezoar formation in acute quetiapine XR overdose. METHODS Observational case series of all patients who underwent gastroscopy after quetiapine XR overdose, which were reported by physicians to the Swiss Toxicological Information Centre between January 2010 and December 2012, with detailed analysis of cases with documented pharmacobezoar. RESULTS Gastric pharmacobezoars were detected in 9 out of 19 gastroscopic evaluations performed during the study period. All these patients ingested a large dose of quetiapine XR (10-61 tablets; 6-24.4 g quetiapine). All patients but one also coingested at least one other substance, and in three cases another XR drug formulation. Gastroscopic pharmacobezoar removal was achieved without complications in all patients, but was difficult due to the particular "gelatinous-sticky-pasty" consistency of the concretion. The subsequent clinical course was favorable. CONCLUSIONS The possibility of pharmacobezoar formation following a large quetiapine XR overdose should be considered, as this may influence acute patient management. Complete endoscopic pharmacobezoar removal may be a promising approach in selected cases, but further studies are needed to define its role.
Resumo:
A central focus of invasion biology is to identify the traits that predict which introduced species will become invasive. Behavioral traits related to locomotor activity most likely play a pivotal role in determining a species’invasion success but have rarely been studied, particularly in terrestrial invertebrates. Here, we experimentally investigated the small-scale locomotor activity of two slug species with divergent invasion success in Europe, the highly invasive slug, Arion lusitanicus, and the closely related, non-invasive and native slug, Arion rufus. To do so, we used a multi-state capture-mark-recapture approach, and hypothesized that the invasive slug has a higher moving rate (keeps on moving) and leaving rate (leaves more frequently known places). A total of 221 invasive and 241 non-invasive slugs were individually marked using magnetic transponders and released in three study sites differing in habitat type. The slugs were recaptured using shelter traps, and moving and leaving rates were estimated. Both rates were significantly higher for the invasive slug, demonstrating a higher locomotor activity which might partly explain its invasion success. Our results provide evidence for the recently suggested idea that locomotor activity might be an important trait underlying animal invasions using for the first time terrestrial invertebrates.
Resumo:
Abnormal yawning is an underappreciated phenomenon in patients with ischemic stroke. We aimed at identifying frequently affected core regions in the supratentorial brain of stroke patients with abnormal yawning and contributing to the anatomical network concept of yawning control. Ten patients with acute anterior circulation stroke and ≥3 yawns/15 min without obvious cause were analyzed. The NIH stroke scale (NIHSS), Glasgow Coma Scale (GCS), symptom onset, period with abnormal yawning, blood oxygen saturation, glucose, body temperature, blood pressure, heart rate, and modified Rankin scale (mRS) were assessed for all patients. MRI lesion maps were segmented on diffusion-weighted images, spatially normalized, and the extent of overlap between the different stroke patterns was determined. Correlations between the period with abnormal yawning and the apparent diffusion coefficient (ADC) in the overlapping regions, total stroke volume, NIHSS and mRS were performed. Periods in which patients presented with episodes of abnormal yawning lasted on average for 58 h. Average GCS, NIHSS, and mRS scores were 12.6, 11.6, and 3.5, respectively. Clinical parameters were within normal limits. Ischemic brain lesions overlapped in nine out of ten patients: in seven patients in the insula and in seven in the caudate nucleus. The decrease of the ADC within the lesions correlated with the period with abnormal yawing (r = -0.76, Bonferroni-corrected p = 0.02). The stroke lesion intensity of the common overlapping regions in the insula and the caudate nucleus correlates with the period with abnormal yawning. The insula might be the long sought-after brain region for serotonin-mediated yawning.
Resumo:
The polysaccharide capsule and pneumolysin toxin are major virulence factors of the human bacterial pathogen Streptococcus pneumoniae. Colonization of the nasopharynx is asymptomatic but invasion of the lungs can result in invasive pneumonia. Here we show that the capsule suppresses the release of the pro-inflammatory cytokines CXCL8 (IL-8) and IL-6 from the human pharyngeal epithelial cell line Detroit 562. Release of both cytokines was much less from human bronchial epithelial cells (iHBEC) but levels were also affected by capsule. Pneumolysin stimulates CXCL8 release from both cell lines. Suppression of CXCL8 homologue (CXCL2/MIP-2) release by the capsule was also observed in vivo during intranasal colonization of mice but was only discernable in the absence of pneumolysin. When pneumococci were administered intranasally to mice in a model of long term, stable nasopharyngeal carriage, encapsulated S. pneumoniae remained in the nasopharynx whereas the nonencapsulated pneumococci disseminated into the lungs. Pneumococcal capsule plays a role not only in protection from phagocytosis but also in modulation of the pro-inflammatory immune response in the respiratory tract.
Resumo:
OBJECTIVE Prolyl hydroxylases (PHD) are oxygen sensors and therefore pharmacological targets to stimulate periodontal regeneration. Here we evaluate the release profile of the PHD inhibitors dimethyloxaloylglycine and l-mimosine from bone substitutes. MATERIALS Dimethyloxaloylglycine and l-mimosine were lyophilised onto bone substitutes including bovine bone mineral, beta-tricalcium phosphate, and hydroxyapatite. Release kinetic was evaluated by bioassays with gingival and periodontal ligament fibroblasts. We determined the capacity of PHD inhibitors to provoke VEGF expression and to repress metabolic activity and proliferation as assessed by immunoassay, MTT conversion and (3)[H]thymidine incorporation, respectively. RESULTS We found that the PHD inhibitors are released from bovine bone mineral as indicated by the increase of VEGF production in gingival and periodontal ligament fibroblasts. Supernatants obtained after 1h also decreased metabolic activity and proliferation of the fibroblasts. A fibrin matrix prolonged the release of PHD inhibitors up to 192h. A similar cellular response was found when supernatants from PHD inhibitors loaded beta-tricalcium phosphate and hydroxyapatite embedded in fibrin were assessed. CONCLUSIONS In conclusion bone substitutes can serve as carriers for PHD inhibitors that maintain their capacity to provoke a pro-angiogenic response in vitro. These findings provide the basis for preclinical studies to evaluate if this release kinetic can stimulate periodontal regeneration.
Resumo:
Opioid substitution treatment (OST) for opioid dependence may be limited by adverse events (AEs). Increasing the range of therapeutic options optimizes outcomes and facilitates patient management. An international, multi-center, two-phase study investigated the efficacy and safety of slow-release oral morphine (SROM) versus methadone in patients receiving methadone therapy for opioid dependence. In phase 1 (two way cross-over, 11 weeks each period) patients were randomized to SROM or methadone oral solution. In phase 2 (25 weeks), patients continued treatment with SROM (group A) or switched from methadone to SROM (group B). In total, 211 out of 276 completed phase 1 and 198 entered phase 2 (n = 95 group A, n = 103 group B). Treatment with both SROM and methadone was well tolerated. However, the mean QTc-interval associated with methadone was significantly longer than that under SROM. Higher treatment satisfaction, fewer cravings for heroin, and lower mental stress were reported with SROM. This study adds a significant further weight of evidence that SROM is an effective and well tolerated long-term maintenance treatment for opioid dependence with a beneficial risk profile compared to methadone regarding cardiac effects and supports its clinical utility.
Resumo:
The X‐linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor, best known for its anti‐apoptotic function in cancer. During apoptosis, XIAP is antagonized by SMAC, which is released from the mitochondria upon caspase‐mediated activation of BID. Recent studies suggest that XIAP is involved in immune signaling. Here, we explore XIAP as an important mediator of an immune response against the enteroinvasive bacterium Shigella flexneri, both in vitro and in vivo. Our data demonstrate for the first time that Shigella evades the XIAP‐mediated immune response by inducing the BID‐dependent release of SMAC from the mitochondria. Unlike apoptotic stimuli, Shigella activates the calpain‐dependent cleavage of BID to trigger the release of SMAC, which antagonizes the inflammatory action of XIAP without inducing apoptosis. Our results demonstrate how the cellular death machinery can be subverted by an invasive pathogen to ensure bacterial colonization.
Resumo:
Time-dependent refractoriness of calcium (Ca2+) release in cardiac myocytes is an important factor in determining whether pro-arrhythmic release patterns develop. At the subcellular level of the Ca2+ spark, recent studies have suggested that recovery of spark amplitude is controlled by local sarcoplasmic reticulum (SR) refilling whereas refractoriness of spark triggering depends on both refilling and the sensitivity of the ryanodine receptor (RyR) release channels that produce sparks. Here we studied regulation of Ca2+ spark refractoriness in mouse ventricular myocytes by examining how β-adrenergic stimulation influenced sequences of Ca2+ sparks originating from individual RyR clusters. Our protocol allowed us to separately measure recovery of spark amplitude and delays between successive sparks, and data were interpreted quantitatively through simulations with a stochastic mathematical model. We found that, compared with spark sequences measured under control conditions: (1) β-adrenergic stimulation with isoproterenol accelerated spark amplitude recovery and decreased spark-to-spark delays; (2) activating protein kinase A (PKA) with forskolin accelerated amplitude recovery but did not affect spark-to-spark delays; (3) inhibiting PKA with H89 retarded amplitude recovery and increased spark- to-spark delays; (4) preventing phosphorylation of the RyR at serine 2808 with a knock-in mouse prevented the decrease in spark-to-spark delays seen with β-adrenergic stimulation; (5) inhibiting either PKA or Ca2+/calmodulin-dependent protein kinase II (CaMKII) during β-adrenergic stimulation prevented the decrease in spark-to-spark delays seen) without inhibition. The results suggest that activation of either PKA or CaMKII is sufficient to speed SR refilling, but activation of both kinases appears necessary to observe increased RyR sensitivity. The data provide novel insight into β-adrenergic regulation of Ca2+ release refractoriness in mouse myocytes.
Resumo:
Cellular oxidative stress, associated with a variety of common cardiac diseases, is well recognized to affect the function of several key proteins involved in Ca2+ signaling and excitation-contraction coupling, which are known to be exquisitely sensitive to reactive oxygen species. These include the Ca2+ release channels of the sarcoplasmic reticulum (ryanodine receptors or RyR2s) and the Ca2+/calmodulin-dependent protein kinase II (CaMKII). Oxidation of RyR2s was found to increase the open probability of the channel, whereas CaMKII can be activated independent of Ca2+ through oxidation. Here, we investigated how oxidative stress affects RyR2 function and SR Ca2+ signaling in situ, by analyzing Ca2+ sparks in permeabilized mouse cardiomyocytes under a broad range of oxidative conditions. The results show that with increasing oxidative stress Ca2+ spark duration is prolonged. In addition, long and very long-lasting (up to hundreds of milliseconds) localized Ca2+ release events started to appear, eventually leading to sarcoplasmic reticulum (SR) Ca2+ depletion. These changes of release duration could be prevented by the CaMKII inhibitor KN93 and did not occur in mice lacking the CaMKII-specific S2814 phosphorylation site on RyR2. The appearance of long-lasting Ca2+ release events was paralleled by an increase of RyR2 oxidation, but also by RyR-S2814 phosphorylation, and by CaMKII oxidation. Our results suggest that in a strongly oxidative environment oxidation-dependent activation of CaMKII leads to RyR2 phosphorylation and thereby contributes to the massive prolongation of SR Ca2+ release events.