256 resultados para Magnetic resonance imaging, perfusion-weighted
Resumo:
BACKGROUND Magnetic resonance imaging (MRI) of the prostate is considered to be the most precise noninvasive staging modality for localized prostate cancer. Multiparametric MRI (mpMRI) dynamic sequences have recently been shown to further increase the accuracy of staging relative to morphological imaging alone. Correct radiological staging, particularly the detection of extraprostatic disease extension, is of paramount importance for target volume definition and dose prescription in highly-conformal curative radiotherapy (RT); in addition, it may affect the risk-adapted duration of additional antihormonal therapy. The purpose of our study was to analyze the impact of mpMRI-based tumor staging in patients undergoing primary RT for prostate cancer. METHODS A total of 122 patients admitted for primary RT for prostate cancer were retrospectively analyzed regarding initial clinical and computed tomography-based staging in comparison with mpMRI staging. Both tumor stage shifts and overall risk group shifts, including prostate-specific antigen (PSA) level and the Gleason score, were assessed. Potential risk factors for upstaging were tested in a multivariate analysis. Finally, the impact of mpMRI-based staging shift on prostate RT and antihormonal therapy was evaluated. RESULTS Overall, tumor stage shift occurred in 55.7% of patients after mpMRI. Upstaging was most prominent in patients showing high-risk serum PSA levels (73%), but was also substantial in patients presenting with low-risk PSA levels (50%) and low-risk Gleason scores (45.2%). Risk group changes occurred in 28.7% of the patients with consequent treatment adaptations regarding target volume delineation and duration of androgen deprivation therapy. High PSA levels were found to be a significant risk factor for tumor upstaging and newly diagnosed seminal vesicle infiltration assessed using mpMRI. CONCLUSIONS Our findings suggest that mpMRI of the prostate leads to substantial tumor upstaging, and can considerably affect treatment decisions in all patient groups undergoing risk-adapted curative RT for prostate cancer.
Resumo:
BACKGROUND Arthroscopy is considered as "the gold standard" for the diagnosis of traumatic intraarticular knee lesions. However, recent developments in magnetic resonance imaging (MRI) now offer good opportunities for the indirect assessment of the integrity and structural changes of the knee articular cartilage. The study was to investigate whether cartilage-specific sequences on a 3-Tesla MRI provide accurate assessment for the detection of cartilage defects. METHODS A 3-Tesla (3-T) MRI combined with three-dimensional double-echo steady-state (3D-DESS) cartilage specific sequences was performed on 210 patients with knee pain prior to knee arthroscopy. Sensitivity, specificity, and positive and negative predictive values of magnetic resonance imaging were calculated and correlated to the arthroscopic findings of cartilaginous lesions. Lesions were classified using the modified Outerbridge classification. RESULTS For the 210 patients (1260 cartilage surfaces: patella, trochlea, medial femoral condyle, medial tibia, lateral femoral condyle, lateral tibia) evaluated, the sensitivities, specificities, positive predictive values, and negative predictive values of 3-T MRI were 83.3, 99.8, 84.4, and 99.8 %, respectively, for the detection of grade IV lesions; 74.1, 99.6, 85.2, and 99.3 %, respectively, for grade III lesions; 67.9, 99.2, 76.6, and 98.2 %, respectively, for grade II lesions; and 8.8, 99.5, 80, and 92 %, respectively, for grade I lesions. CONCLUSIONS For grade III and IV lesions, 3-T MRI combined with 3D-DESS cartilage-specific sequences represents an accurate diagnostic tool. For grade II lesions, the technique demonstrates moderate sensitivity, while for grade I lesions, the sensitivity is limited to provide reliable diagnosis compared to knee arthroscopy.
Resumo:
INTRODUCTION Left ventricular thrombus (LVT) formation may worsen the post-infarct outcome as a result of thromboembolic events. It also complicates the use of modern antiplatelet regimens, which are not compatible with long-term oral anticoagulation. The knowledge of the incidence of LVT may therefore be of importance to guide antiplatelet and antithrombotic therapy after acute myocardial infarction (AMI). METHODS In 177 patients with large, mainly anterior AMI, standard cardiac magnetic resonance imaging (CMR) including cine and late gadolinium enhancement (LGE) imaging was performed shortly after AMI as per protocol. CMR images were analysed at an independent core laboratory blinded to the clinical data. Transthoracic echocardiography (TTE) was not mandatory for the trial, but was performed in 64% of the cases following standard of care. In a logistic model, 3 out of 61 parameters were used in a multivariable model to predict LVT. RESULTS LVT was detected by use of CMR in 6.2% (95% confidence interval [CI] 3.1%-10.8%). LGE sequences were best to detect LVT, which may be missed in cine sequences. We identified body mass index (odds ratio 1.18; p = 0.01), baseline platelet count (odds ratio 1.01, p = 0.01) and infarct size as assessed by use of CMR (odds ratio 1.03, p = 0.02) as best predictors for LVT. The agreement between TTE and CMR for the detection of LVT is substantial (kappa = 0.70). DISCUSSION In the current analysis, the incidence of LVT shortly after AMI is relatively low, even in a patient population at high risk. An optimal modality for LVT detection is LGE-CMR but TTE has an acceptable accuracy when LGE-CMR is not available.
Resumo:
Owing to the demand for genuine mozzarella, some 330 water buffaloes are being slaughtered every year in Switzerland albeit a stunning procedure meeting animal welfare and occupational safety requirements remains to be established. To provide a basis for improvements, we sized anatomical specifics in water buffaloes and cattle and we assessed brain lesions after stunning with captive bolts or handguns by diagnostic imaging. In water buffaloes and cattle, the median distance from the frontal skin surface to the inner bone table was 74.0 mm (56.0–100.0 mm) vs 36.6 mm (29.3–44.3 mm) and from skin to the thalamus 144.8 mm (117.1–172.0 mm) vs 102.0 (101.0–121.0 mm), respectively. Consequently, customary captive bolt stunners may be inadequate. Free bullets are potentially suitable for stunning buffaloes but involve occupational safety hazards. The results of the present study shall be used to develop a device allowing effective and safe stunning of water buffaloes.
Resumo:
PURPOSE The aim of this study was to evaluate the utility of cardiac postmortem magnetic resonance (PMMR) to perform routine measurements of the ventricular wall thicknesses and the heart valves and to assess if imaging measurements are consistent with traditional autopsy measurements. METHODS In this retrospective study, 25 cases with cardiac PMMR and subsequent autopsy were included. The thicknesses of the myocardial walls as well as the circumferences of all heart valves were measured on cardiac PMMR and compared to autopsy measurements. Paired samples T-test and the Wilcoxon-Signed rank test, were used to compare autopsy and cardiac PMMR measurements. For exploring correlations, the Pearson's Correlation coefficient and the Spearman's Rho test were used. RESULTS Cardiac PMMR measurements of the aortic and pulmonary valve circumferences showed no significant differences from autopsy measurements. The mitral and tricuspid valves circumferences differed significantly from autopsy measurements. Left myocardial and right myocardial wall thickness also differed significantly from autopsy measurements. Left and right myocardial wall thickness, and tricuspid valve circumference measurements on cardiac PMMR and autopsy, correlated strongly and significantly. CONCLUSION Several PMMR measurements of cardiac parameters differ significantly from corresponding autopsy measurements. However, there is a strong correlation between cardiac PMMR measurements and autopsy measurements in the majority of these parameters. It is important to note that myocardial walls are thicker when measured in situ on cardiac PMMR than when measured at autopsy. Investigators using post-mortem MR should be aware of these differences in order to avoid false diagnoses of cardiac pathology based on cardiac PMMR.
Resumo:
Magnetic Resonance Imaging of the Pituitary Gland of Horses With Pituitary Pars Intermedia Dysfunction
Resumo:
Brain disease is an important cause of neurologic deficits in small ruminants, however few MRI features have been described. The aim of this retrospective, case series study was to describe MRI characteristics in a group of small ruminants with confirmed brain disease. A total of nine small ruminants (six sheep and three goats) met inclusion criteria. All had neurologic disorders localized to the brain and histopathologic confirmation. In animals with toxic-metabolic diseases, there were bilaterally symmetric MRI lesions affecting either the gray matter (one animal with polioencephalomalacia) or the white matter (two animals with enterotoxemia). In animals with suppurative inflammation, asymmetric focal brainstem lesions were present (two animals with listeric encephalitis), or lesions typical of an intra-axial (one animal) or dural abscess (one animal), respectively. No MRI lesions were detected in one animal with suspected viral cerebellitis and one animal with parasitic migration tracts. No neoplastic or vascular lesions were identified in this case series. Findings from the current study supported the use of MRI for diagnosing brain diseases in small ruminants.
Resumo:
INTRODUCTION: Cartilage defects are common pathologies and surgical cartilage repair shows promising results. In its postoperative evaluation, the magnetic resonance observation of cartilage repair tissue (MOCART) score, using different variables to describe the constitution of the cartilage repair tissue and the surrounding structures, is widely used. High-field magnetic resonance imaging (MRI) and 3-dimensional (3D) isotropic sequences may combine ideal preconditions to enhance the diagnostic performance of cartilage imaging.Aim of this study was to introduce an improved 3D MOCART score using the possibilities of an isotropic 3D true fast imaging with steady-state precession (True-FISP) sequence in the postoperative evaluation of patients after matrix-associated autologous chondrocyte transplantation (MACT) as well as to compare the results to the conventional 2D MOCART score using standard MR sequences. MATERIAL AND METHODS: The study had approval by the local ethics commission. One hundred consecutive MR scans in 60 patients at standard follow-up intervals of 1, 3, 6, 12, 24, and 60 months after MACT of the knee joint were prospectively included. The mean follow-up interval of this cross-sectional evaluation was 21.4 +/- 20.6 months; the mean age of the patients was 35.8 +/- 9.4 years. MRI was performed at a 3.0 Tesla unit. All variables of the standard 2D MOCART score where part of the new 3D MOCART score. Furthermore, additional variables and options were included with the aims to use the capabilities of isotropic MRI, to include the results of recent studies, and to adapt to the needs of patients and physician in a clinical routine examination. A proton-density turbo spin-echo sequence, a T2-weighted dual fast spin-echo (dual-FSE) sequence, and a T1-weighted turbo inversion recovery magnitude (TIRM) sequence were used to assess the standard 2D MOCART score; an isotropic 3D-TrueFISP sequence was prepared to evaluate the new 3D MOCART score. All 9 variables of the 2D MOCART score were compared with the corresponding variables obtained by the 3D MOCART score using the Pearson correlation coefficient; additionally the subjective quality and possible artifacts of the MR sequences were analyzed. RESULTS: The correlation between the standard 2D MOCART score and the new 3D MOCART showed for the 8 variables "defect fill," "cartilage interface," "surface," "adhesions," "structure," "signal intensity," "subchondral lamina," and "effusion"-a highly significant (P < 0.001) correlation with a Pearson coefficient between 0.566 and 0.932. The variable "bone marrow edema" correlated significantly (P < 0.05; Pearson coefficient: 0.257). The subjective quality of the 3 standard MR sequences was comparable to the isotropic 3D-TrueFISP sequence. Artifacts were more frequently visible within the 3D-TrueFISP sequence. CONCLUSION: In the clinical routine follow-up after cartilage repair, the 3D MOCART score, assessed by only 1 high-resolution isotropic MR sequence, provides comparable information than the standard 2D MOCART score. Hence, the new 3D MOCART score has the potential to combine the information of the standard 2D MOCART score with the possible advantages of isotropic 3D MRI at high-field. A clear limitation of the 3D-TrueFISP sequence was the high number of artifacts. Future studies have to prove the clinical benefits of a 3D MOCART score.
Resumo:
To evaluate a new isotropic 3D proton-density, turbo-spin-echo sequence with variable flip-angle distribution (PD-SPACE) sequence compared to an isotropic 3D true-fast-imaging with steady-state-precession (True-FISP) sequence and 2D standard MR sequences with regard to the new 3D magnetic resonance observation of cartilage repair tissue (MOCART) score.
Resumo:
Time-of-flight (ToF) and phase contrast (PC) magnetic resonance angiographies (MRAs) are noninvasive applications to depict the cerebral arteries. Both approaches can image the cerebral vasculature without the administration of intravenous contrast. Therefore, it is used in routine clinical evaluation of cerebrovascular diseases, e.g., aneurysm and arteriovenous malformations. However, subtle microvascular disease usually cannot be resolved with standard, clinical-field-strength MRA. The purpose of this study was to compare the ability of ToF and PC MRA to visualize the cerebral arteries at increasing field strengths.
Resumo:
PURPOSE: To perform a quantitative and qualitative comparison of gadobutrol and gadoterate in three-station contrast enhanced magnetic resonance angiography (CE-MRA) of the lower limbs. MATERIALS AND METHODS: In this prospective randomized controlled trial, 52 patients with leg ischemia were randomly assigned to one of two groups receiving either gadobutrol (1.0 mmol Gd/mL, 15 mL) or gadoterate (0.5 mmol Gd/mL, 30 mL). Three-station 3D CE-MRAs from the pelvis to the ankles were performed with moving-table technique on a 1.5T MR scanner. Injection time was identical in both groups. Signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were calculated for 816 arteries. Contrast quality in 1196 vessel segments was evaluated separately by two blinded readers on a three-point scale. RESULTS: Mean SNR (61.8 +/- 7.8 for gadobutrol vs. 61.9 +/- 9.1 for gadoterate, P = 0.257), CNR (52.8 +/- 9.1 vs. 52.8 +/- 10.7, P = 0.154), and qualitative ranking (1.41 vs. 1.44, P = 0.21) for all vessels did not differ significantly between the two patient groups. The overall quality was good in 90.4% with gadoterate and 94.2% with gadobutrol (P = 0.462). CONCLUSION: High-concentration gadobutrol allows neither a higher CNR nor any qualitative advantage over the ordinary unspecific Gd agent gadoterate when the same Gd load and injection times are used in multistation CE-MRA of the peripheral arteries.
Resumo:
INTRODUCTION: Ultra-high-field whole-body systems (7.0 T) have a high potential for future human in vivo magnetic resonance imaging (MRI). In musculoskeletal MRI, biochemical imaging of articular cartilage may benefit, in particular. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping have shown potential at 3.0 T. Although dGEMRIC, allows the determination of the glycosaminoglycan content of articular cartilage, T2 mapping is a promising tool for the evaluation of water and collagen content. In addition, the evaluation of zonal variation, based on tissue anisotropy, provides an indicator of the nature of cartilage ie, hyaline or hyaline-like articular cartilage.Thus, the aim of our study was to show the feasibility of in vivo dGEMRIC, and T2 and T2* relaxation measurements, at 7.0 T MRI; and to evaluate the potential of T2 and T2* measurements in an initial patient study after matrix-associated autologous chondrocyte transplantation (MACT) in the knee. MATERIALS AND METHODS: MRI was performed on a whole-body 7.0 T MR scanner using a dedicated circular polarization knee coil. The protocol consisted of an inversion recovery sequence for dGEMRIC, a multiecho spin-echo sequence for standard T2 mapping, a gradient-echo sequence for T2* mapping and a morphologic PD SPACE sequence. Twelve healthy volunteers (mean age, 26.7 +/- 3.4 years) and 4 patients (mean age, 38.0 +/- 14.0 years) were enrolled 29.5 +/- 15.1 months after MACT. For dGEMRIC, 5 healthy volunteers (mean age, 32.4 +/- 11.2 years) were included. T1 maps were calculated using a nonlinear, 2-parameter, least squares fit analysis. Using a region-of-interest analysis, mean cartilage relaxation rate was determined as T1 (0) for precontrast measurements and T1 (Gd) for postcontrast gadopentate dimeglumine [Gd-DTPA(2-)] measurements. T2 and T2* maps were obtained using a pixelwise, monoexponential, non-negative least squares fit analysis; region-of-interest analysis was carried out for deep and superficial cartilage aspects. Statistical evaluation was performed by analyses of variance. RESULTS: Mean T1 (dGEMRIC) values for healthy volunteers showed slightly different results for femoral [T1 (0): 1259 +/- 277 ms; T1 (Gd): 683 +/- 141 ms] compared with tibial cartilage [T1 (0): 1093 +/- 281 ms; T1 (Gd): 769 +/- 150 ms]. Global mean T2 relaxation for healthy volunteers showed comparable results for femoral (T2: 56.3 +/- 15.2 ms; T2*: 19.7 +/- 6.4 ms) and patellar (T2: 54.6 +/- 13.0 ms; T2*: 19.6 +/- 5.2 ms) cartilage, but lower values for tibial cartilage (T2: 43.6 +/- 8.5 ms; T2*: 16.6 +/- 5.6 ms). All healthy cartilage sites showed a significant increase from deep to superficial cartilage (P < 0.001). Within healthy cartilage sites in MACT patients, adequate values could be found for T2 (56.6 +/- 13.2 ms) and T2* (18.6 +/- 5.3 ms), which also showed a significant stratification. Within cartilage repair tissue, global mean values showed no difference, with 55.9 +/- 4.9 ms for T2 and 16.2 +/- 6.3 ms for T2*. However, zonal assessment showed only a slight and not significant increase from deep to superficial cartilage (T2: P = 0.174; T2*: P = 0.150). CONCLUSION: In vivo T1 dGEMRIC assessment in healthy cartilage, and T2 and T2* mapping in healthy and reparative articular cartilage, seems to be possible at 7.0 T MRI. For T2 and T2*, zonal variation of articular cartilage could also be evaluated at 7.0 T. This zonal assessment of deep and superficial cartilage aspects shows promising results for the differentiation of healthy and affected articular cartilage. In future studies, optimized protocol selection, and sophisticated coil technology, together with increased signal at ultra-high-field MRI, may lead to advanced biochemical cartilage imaging.