112 resultados para Ischemia and reperfusion
Resumo:
INTRODUCTION Cardiac myocytes utilize three high-capacity Na transport processes whose precise function can determine myocyte fate and the triggering of arrhythmias in pathological settings. We present recent results on the regulation of all three transporters that may be important for an understanding of cardiac function during ischemia/reperfusion episodes. METHODS AND RESULTS Refined ion selective electrode (ISE) techniques and giant patch methods were used to analyze the function of cardiac Na/K pumps, Na/Ca exchange (NCX1), and Na/H exchange (NHE1) in excised cardiac patches and intact myocytes. To consider results cohesively, simulations were developed that account for electroneutrality of the cytoplasm, ion homeostasis, water homeostasis (i.e., cell volume), and cytoplasmic pH. The Na/K pump determines the average life-time of Na ions (3-10 minutes) as well as K ions (>30 minutes) in the cytoplasm. The long time course of K homeostasis can determine the time course of myocyte volume changes after ion homeostasis is perturbed. In excised patches, cardiac Na/K pumps turn on slowly (-30 seconds) with millimolar ATP dependence, when activated for the first time. In steady state, however, pumps are fully active with <0.2 mM ATP and are nearly unaffected by high ADP (2 mM) and Pi (10 mM) concentrations as may occur in ischemia. NCX1s appear to operate with slippage that contributes to background Na influx and inward current in heart. Thus, myocyte Na levels may be regulated by the inactivation reactions of the exchanger which are both Na- and proton-dependent. NHE1 also undergo strong Na-dependent inactivation, whereby a brief rise of cytoplasmic Na can cause inactivation that persists for many minutes after cytoplasmic Na is removed. This mechanism is blocked by pertussis toxin, suggesting involvement of a Na-dependent G-protein. Given that maximal NCX1- and NHE1-mediated ion fluxes are much greater than maximal Na/K pump-mediated Na extrusion in myocytes, the Na-dependent inactivation mechanisms of NCX1 and NHE1 may be important determinants of cardiac Na homeostasis. CONCLUSIONS Na/K pumps appear to be optimized to continue operation when energy reserves are compromised. Both NCX1 and NHE1 activities are regulated by accumulation of cytoplasmic Na. These principles may importantly control cardiac cytoplasmic Na and promote myocyte survival during ischemia/reperfusion episodes by preventing Ca overload.
Resumo:
Spontaneous vertebral artery dissection (sVADs) mainly cause cerebral ischemia, with or without associated local symptoms and signs (headache, neck pain, or cervical radiculopathy), or with local symptoms and signs only.
Resumo:
To test the hypothesis that the lectin-like domain of tumor necrosis factor, mimicked by the TIP peptide, can improve lung function after unilateral orthotopic lung isotransplantation. Because of a lack of a specific treatment for ischemia reperfusion-mediated lung injury, accompanied by a disrupted barrier integrity and a dysfunctional alveolar liquid clearance, alternative therapies restoring these parameters after lung transplantation are required.
Resumo:
Background: This study evaluates cardiovascular risk factors associated with progression of coronary artery disease (CAD) in patientswith silent ischemia followingmyocardial infarction. Hypothesis: Coronary artery disease only progresses slowly with comprehensive risk factor intervention. Methods: A total of 104 of 201 patients (51.7%) of the Swiss Interventional Study on Silent Ischemia Type II (SWISSI II) with baseline and follow-up coronary angiography were included. All patients received comprehensive cardiovascular risk factor intervention according to study protocol. Logistic regression was used to evaluate associationsbetween baseline cardiovascular risk factors and CAD progression. Results: The mean duration of follow-upwas 10.3 ± 2.4 years. At baseline, 77.9% of patients were smokers, 45.2% had hypertension, 73.1% had dyslipidemia, 7.7% had diabetes, and 48.1% had a family history of CAD. At last follow-up, only 27 patients of the initial 81 smokers still smoked, only 2.1% of the patients had uncontrolled hypertension, 10.6%of the patientshad uncontrolled dyslipidemia, and 2.1%of the patientshad uncontrolled diabetes. Coronary artery disease progression was found in up to 81 (77.9%) patients. Baseline diabetes and younger age were associatedwith increased odds of CAD progression.The time intervalbetween baseline and follow-up angiography was also associatedwith CAD progression. Conclusion: Coronary artery disease progressionwas highly prevalent in these patients despite comprehensive risk factor intervention. Further research is needed to optimize treatment of known risk factors and to identify other unknown and potentiallymodifiable risk factors.
Resumo:
There is a demand for technologies able to assess the perfusion of surgical flaps quantitatively and reliably to avoid ischemic complications. The aim of this study is to test a new high-speed high-definition laser Doppler imaging (LDI) system (FluxEXPLORER, Microvascular Imaging, Lausanne, Switzerland) in terms of preoperative mapping of the vascular supply (perforator vessels) and postoperative flow monitoring. The FluxEXPLORER performs perfusion mapping of an area 9 x 9 cm with a resolution of 256 x 256 pixels within 6 s in high-definition imaging mode. The sensitivity and predictability to localize perforators is expressed by the coincidence of preoperatively assessed LDI high flow spots with intraoperatively verified perforators in nine patients. 18 free flaps are monitored before, during, and after total ischemia. 63% of all verified perforators correspond to a high flow spot, and 38% of all high flow spots correspond to a verified perforator (positive predictive value). All perfused flaps reveal a value of above 221 perfusion units (PUs), and all values obtained in the ischemic flaps are beneath 187 PU. In summary, we conclude that the present LDI system can serve as a reliable, fast, and easy-to-handle tool to detect ischemia in free flaps, whereas perforator vessels cannot be detected appropriately.
Resumo:
To investigate the aetiology and long-term clinical outcomes of patients diagnosed with digital ischemia.