112 resultados para Fire extension.
Resumo:
UNLABELLED The FREEDOM study and its Extension provide long-term information about the effects of denosumab for the treatment of postmenopausal osteoporosis. Treatment for up to 8 years was associated with persistent reduction of bone turnover, continued increases in bone mineral density, low fracture incidence, and a favorable benefit/risk profile. INTRODUCTION This study aims to report the results through year 5 of the FREEDOM Extension study, representing up to 8 years of continued denosumab treatment in postmenopausal women with osteoporosis. METHODS Women who completed the 3-year FREEDOM study were eligible to enter the 7-year open-label FREEDOM Extension in which all participants are scheduled to receive denosumab, since placebo assignment was discontinued for ethical reasons. A total of 4550 women enrolled in the Extension (2343 long-term; 2207 cross-over). In this analysis, women in the long-term and cross-over groups received denosumab for up to 8 and 5 years, respectively. RESULTS Throughout the Extension, sustained reduction of bone turnover markers (BTMs) was observed in both groups. In the long-term group, mean bone mineral density (BMD) continued to increase significantly at each time point measured, for cumulative 8-year gains of 18.4 and 8.3 % at the lumbar spine and total hip, respectively. In the cross-over group, mean BMD increased significantly from the Extension baseline for 5-year cumulative gains of 13.1 and 6.2 % at the lumbar spine and total hip, respectively. The yearly incidence of new vertebral and nonvertebral fractures remained low in both groups. The incidence of adverse and serious adverse events did not increase over time. Through Extension year 5, eight events of osteonecrosis of the jaw and two events of atypical femoral fracture were confirmed. CONCLUSIONS Denosumab treatment for up to 8 years was associated with persistent reductions of BTMs, continued BMD gains, low fracture incidence, and a consistent safety profile.
Resumo:
Little is known about the vegetation and fire history of Sardinia, and especially the long-term history of the thermo-Mediterranean belt that encompasses its entire coastal lowlands. A new sedimentary record from a coastal lake based on pollen, spores, macrofossils and microscopic charcoal analysis is used to reconstruct the vegetation and fire history in north-eastern Sardinia. During the mid-Holocene (c. 8,100–5,300 cal bp), the vegetation around Stagno di Sa Curcurica was characterised by dense Erica scoparia and E. arborea stands, which were favoured by high fire activity. Fire incidence declined and evergreen broadleaved forests of Quercus ilex expanded at the beginning of the late Holocene. We relate the observed vegetation and fire dynamics to climatic change, specifically moister and cooler summers and drier and milder winters after 5,300 cal bp. Agricultural activities occurred since the Neolithic and intensified after c. 7,000 cal bp. Around 2,750 cal bp, a further decline of fire incidence and Erica communities occurred, while Quercus ilex expanded and open-land communities became more abundant. This vegetation shift coincided with the historically documented beginning of Phoenician period, which was followed by Punic and Roman civilizations in Sardinia. The vegetational change at around 2,750 cal bp was possibly advantaged by a further shift to moister and cooler summers and drier and milder winters. Triggers for climate changes at 5,300 and 2,750 cal bp may have been gradual, orbitally-induced changes in summer and winter insolation, as well as centennial-scale atmospheric reorganizations. Open evergreen broadleaved forests persisted until the twentieth century, when they were partly substituted by widespread artificial pine plantations. Our results imply that highly flammable Erica vegetation, as reconstructed for the mid-Holocene, could re-emerge as a dominant vegetation type due to increasing drought and fire, as anticipated under global change conditions.
Resumo:
1 Pollen and charcoal analysis at two lakes in southern Switzerland revealed that fire has had a prominent role in changing the woodland composition of this area for more than 7000 years. 2 The sediment of Lago di Origlio for the period between 5100 and 3100 bc cal. was sampled continuously with a time interval of about 10 years. Peaks of charcoal particles were significantly correlated with repeated declines in pollen of Abies, Hedera, Tilia, Ulmus, Fraxinus excelsior t., Fagus and Vitis and with increases in Alnus glutinosa t., shrubs (e.g. Corylus, Salix and Sambucus nigra t.) and several herbaceous species. The final disappearance of the lowland Abies alba stands at around 3150 bc cal. may be an example of a fire-caused local extinction of a fire-intolerant species. 3 Forest fires tended to diminish pollen diversity. The charcoal peaks were preceded by pollen types indicating human activity. Charcoal minima occurred during periods of cold humid climate, when fire susceptibility would be reduced. 4 An increase of forest fires at about 2100 bc cal. severely reduced the remaining fire-sensitive plants: the mixed-oak forest was replaced by a fire-tolerant alder–oak forest. The very strong increase of charcoal influx, and the marked presence of anthropogenic indicators, point to principally anthropogenic causes. 5 We suggest that without anthropogenic disturbances Abies alba would still form lowland forests together with various deciduous broadleaved tree taxa.
Resumo:
Variability in fire regime at the continental scale has primarily been attributed to climate change, often overshadowing the widely potential impact of human activities. However, human ignition modifies the rhythm of fire episodes occurrence (fire frequency), whereas land use alters vegetation composition and fuel load, and thus the amount of biomass burned. It is unclear, however, whether and how humans have exercised a significant influence over fire regimes at continental and millennial scales. Based on sedimentary charcoal records, we use new alternative estimate of fire frequency and biomass burned for the last 16000 years (here after 16 ky) that we evaluate with outputs from climate, vegetation, land use and population models. We find that pronounced regional-scale land use changes in southern Europe at the beginning of the Neolithic (8–6 ky), during the Bronze Age (5–4 ky) and the medieval period (1 ky) caused a doubling of fire frequency compared to the Holocene average (the last 11.5 ky). Despite anthropogenic influences, southern European biomass burned decreased from 7 ky, which is in line both with changes in orbital parameters leading climate cooling and also reductions in biomass availability because of land use. Our study underscores the role of elevation-dependent parameters, and particularly biomass and land management, as major drivers of fire regime variability. Results attest a determinant anthropogenic driving-force on fire regime and a decrease in fire-carbon emissions since 7 ky in Southern Europe.
Resumo:
Advances in Interdisciplinary Paleofire Research: Data and Model Comparisons for the Past Millennium; Harvard Forest, Petersham, Massachusetts, 27 September to 2 October 2015
Resumo:
Knowledge about vegetation and fire history of the mountains of Northern Sicily is scanty. We analysed five sites to fill this gap and used terrestrial plant macrofossils to establish robust radiocarbon chronologies. Palynological records from Gorgo Tondo, Gorgo Lungo, Marcato Cixé, Urgo Pietra Giordano and Gorgo Pollicino show that under natural or near natural conditions, deciduous forests (Quercus pubescens, Q. cerris, Fraxinus ornus, Ulmus), that included a substantial portion of evergreen broadleaved species (Q. suber, Q. ilex, Hedera helix), prevailed in the upper meso-mediterranean belt. Mesophilous deciduous and evergreen broadleaved trees (Fagus sylvatica, Ilex aquifolium) dominated in the natural or quasi-natural forests of the oro-mediterranean belt. Forests were repeatedly opened for agricultural purposes. Fire activity was closely associated with farming, providing evidence that burning was a primary land use tool since Neolithic times. Land use and fire activity intensified during the Early Neolithic at 5000 bc, at the onset of the Bronze Age at 2500 bc and at the onset of the Iron Age at 800 bc. Our data and previous studies suggest that the large majority of open land communities in Sicily, from the coastal lowlands to the mountain areas below the thorny-cushion Astragalus belt (ca. 1,800 m a.s.l.), would rapidly develop into forests if land use ceased. Mesophilous Fagus-Ilex forests developed under warm mid Holocene conditions and were resilient to the combined impacts of humans and climate. The past ecology suggests a resilience of these summer-drought adapted communities to climate warming of about 2 °C. Hence, they may be particularly suited to provide heat and drought-adapted Fagus sylvatica ecotypes for maintaining drought-sensitive Central European beech forests under global warming conditions.