160 resultados para Endomyocardial Fibrosis
Resumo:
OBJECTIVES This study sought to evaluate the relationship between fibrosis imaged by delayed-enhancement (DE) magnetic resonance imaging (MRI) and atrial electrograms (Egms) in persistent atrial fibrillation (AF). BACKGROUND Atrial fractionated Egms are strongly related to slow anisotropic conduction. Their relationship to atrial fibrosis has not yet been investigated. METHODS Atrial high-resolution MRI of 18 patients with persistent AF (11 long-lasting persistent AF) was registered with mapping geometry (NavX electro-anatomical system (version 8.0, St. Jude Medical, St. Paul, Minnesota)). DE areas were categorized as dense or patchy, depending on their DE content. Left atrial Egms during AF were acquired using a high-density, 20-pole catheter (514 ± 77 sites/map). Fractionation, organization/regularity, local mean cycle length (CL), and voltage were analyzed with regard to DE. RESULTS Patients with long-lasting persistent versus persistent AF had larger left atrial (LA) surface area (134 ± 38 cm(2) vs. 98 ± 9 cm(2), p = 0.02), a higher amount of atrial DE (70 ± 16 cm(2) vs. 49 ± 10 cm(2), p = 0.01), more complex fractionated atrial Egm (CFAE) extent (54 ± 16 cm(2) vs. 28 ± 15 cm(2), p = 0.02), and a shorter baseline AF CL (147 ± 10 ms vs. 182 ± 14 ms, p = 0.01). Continuous CFAE (CFEmean [NavX algorithm that quantifies Egm fractionation] <80 ms) occupied 38 ± 19% of total LA surface area. Dense DE was detected at the left posterior left atrium. In contrast, the right posterior left atrium contained predominantly patchy DE. Most CFAE (48 ± 14%) occurred at non-DE LA sites, followed by 41 ± 12% CFAE at patchy DE and 11 ± 6% at dense DE regions (p = 0.005 and p = 0.008, respectively); 19 ± 6% CFAE sites occurred at border zones of dense DE. Egms were less fractionated, with longer CL and lower voltage at dense DE versus non-DE regions: CFEmean: 97 ms versus 76 ms, p < 0.0001; local CL: 153 ms versus 143 ms, p < 0.0001; mean voltage: 0.63 mV versus 0.86 mV, p < 0.0001. CONCLUSIONS Atrial fibrosis as defined by DE MRI is associated with slower and more organized electrical activity but with lower voltage than healthy atrial areas. Ninety percent of continuous CFAE sites occur at non-DE and patchy DE LA sites. These findings are important when choosing the ablation strategy in persistent AF.
Resumo:
Inefficient alveolar wound repair contributes to the development of pulmonary fibrosis. Hepatocyte growth factor (HGF) is a potent growth factor for alveolar type II epithelial cells (AECII) and may improve repair and reduce fibrosis. We studied whether targeted gene transfer of HGF specifically to AECII improves lung fibrosis in bleomycin-induced lung fibrosis. A plasmid encoding human HGF expressed from the human surfactant protein C promoter (pSpC-hHGF) was designed, and extracorporeal electroporation-mediated gene transfer of HGF specifically to AECII was performed 7 days after bleomycin-induced lung injury in the rat. Animals were killed 7 days after hHGF gene transfer. Electroporation-mediated HGF gene transfer resulted in HGF expression specifically in AECII at biologically relevant levels. HGF gene transfer reduced pulmonary fibrosis as assessed by histology, hydroxyproline determination, and design-based stereology compared with controls. Our results indicate that the antifibrotic effect of HGF is due in part to a reduction of transforming growth factor-β(1), modulation of the epithelial-mesenchymal transition, and reduction of extravascular fibrin deposition. We conclude that targeted HGF gene transfer specifically to AECII decreases bleomycin-induced lung fibrosis and may therefore represent a novel cell-specific gene transfer technology to treat pulmonary fibrosis.
Reasons for heterogeneous change in LCI in children with cystic fibrosis after antibiotic treatment.
Resumo:
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is characterized by formation and proliferation of fibroblast foci. Endothelin-1 induces lung fibroblast proliferation and contractile activity via the endothelin A (ETA) receptor. OBJECTIVE To determine whether ambrisentan, an ETA receptor-selective antagonist, reduces the rate of IPF progression. DESIGN Randomized, double-blind, placebo-controlled, event-driven trial. (ClinicalTrials.gov: NCT00768300). SETTING Academic and private hospitals. PARTICIPANTS Patients with IPF aged 40 to 80 years with minimal or no honeycombing on high-resolution computed tomography scans. INTERVENTION Ambrisentan, 10 mg/d, or placebo. MEASUREMENTS Time to disease progression, defined as death, respiratory hospitalization, or a categorical decrease in lung function. RESULTS The study was terminated after enrollment of 492 patients (75% of intended enrollment; mean duration of exposure to study medication, 34.7 weeks) because an interim analysis indicated a low likelihood of showing efficacy for the end point by the scheduled end of the study. Ambrisentan-treated patients were more likely to meet the prespecified criteria for disease progression (90 [27.4%] vs. 28 [17.2%] patients; P = 0.010; hazard ratio, 1.74 [95% CI, 1.14 to 2.66]). Lung function decline was seen in 55 (16.7%) ambrisentan-treated patients and 19 (11.7%) placebo-treated patients (P = 0.109). Respiratory hospitalizations were seen in 44 (13.4%) and 9 (5.5%) patients in the ambrisentan and placebo groups, respectively (P = 0.007). Twenty-six (7.9%) patients who received ambrisentan and 6 (3.7%) who received placebo died (P = 0.100). Thirty-two (10%) ambrisentan-treated patients and 16 (10%) placebo-treated patients had pulmonary hypertension at baseline, and analysis stratified by the presence of pulmonary hypertension revealed similar results for the primary end point. LIMITATION The study was terminated early. CONCLUSION Ambrisentan was not effective in treating IPF and may be associated with an increased risk for disease progression and respiratory hospitalizations. PRIMARY FUNDING SOURCE Gilead Sciences.
Resumo:
BACKGROUND Persons with cystic fibrosis (CF) are at-risk for health effects from ambient air pollution but little is known about the interaction of nanoparticles (NP) with CF lungs. Here we study the distribution of inhaled NP in a murine CF model and aim to reveal mechanisms contributing to adverse effects of inhaled particles in susceptible populations. METHODS Chloride channel defective CftrTgH (neoim) Hgu mice were used to analyze lung function, lung distribution and whole body biokinetics of inhaled NP, and inflammatory responses after intratracheal administration of NP. Distribution of 20-nm titanium dioxide NP in lungs was assessed on ultrathin sections immediately and 24 h after a one-hour NP inhalation. NP biokinetics was deduced from total and regional lung deposition and from whole body translocation of inhaled 30-nm iridium NP within 24 h after aerosol inhalation. Inflammatory responses were assessed within 7 days after carbon NP instillation. RESULTS Cftr mutant females had moderately reduced lung compliance and slightly increased airway resistance compared to wild type mice. We found no genotype dependent differences in total, regional and head deposition or in secondary-organ translocation of inhaled iridium NP. Titanium dioxide inhalation resulted in higher NP uptake by alveolar epithelial cells in Cftr mutants. Instillation of carbon NP induced a comparable acute and transient inflammatory response in both genotypes. The twofold increase of bronchoalveolar lavage (BAL) neutrophils in Cftr mutant compared to wild type mice at day 3 but not at days 1 and 7, indicated an impaired capacity in inflammation resolution in Cftr mutants. Concomitant to the delayed decline of neutrophils, BAL granulocyte-colony stimulating factor was augmented in Cftr mutant mice. Anti-inflammatory 15-hydroxyeicosatetraenoic acid was generally significantly lower in BAL of Cftr mutant than in wild type mice. CONCLUSIONS Despite lacking alterations in lung deposition and biokinetics of inhaled NP, and absence of significant differences in lung function, higher uptake of NP by alveolar epithelial cells and prolonged, acute inflammatory responses to NP exposure indicate a moderately increased susceptibility of lungs to adverse effects of inhaled NP in Cftr mutant mice and provides potential mechanisms for the increased susceptibility of CF patients to air pollution.
Resumo:
Progressive interstitial fibrosis and tubular atrophy (IF/TA) is a leading cause of chronic allograft dysfunction. Increased extracellular matrix remodeling regulated by matrix metalloproteases (MMPs) and their inhibitors (TIMPs) has been implicated in the development of IF/TA. The aim of this study was to investigate whether urinary/serum MMPs/TIMPs correlate with subclinical IF/TA detected in surveillance biopsies within the first 6months post-transplant. We measured eight different MMPs/TIMPs simultaneously in urine and serum samples from patients classified as normal histology (n=15), IF/TA 1 (n=15) and IF/TA 2-3 (n=10). There was no difference in urinary MMPs/TIMPs among the three groups, and only 1/8 serum MMPs/TIMPs (i.e. MMP-1) was significantly elevated in biopsies with IF/TA 2-3 (p=0.01). In addition, urinary/serum MMPs/TIMPs were not different between surveillance biopsies demonstrating an early development of IF/TA (i.e. delta IF/TA≥1 compared to a previous biopsy obtained three months before; n=11) and stable grade of IF/TA (i.e. delta IF/TA=0; n=20). Next, we investigated whether urinary/serum MMP/TIMP levels are elevated during acute subclinical tubulitis in surveillance biopsies obtained within the first 6months post-transplant (n=25). Compared to biopsies with normal histology, serum MMPs/TIMPs were not different; however, all urinary MMP/TIMP levels were numerically higher during subclinical tubulitis (MMP-1, MMP-7, TIMP-1 with p≤0.04). We conclude that urinary/serum MMPs/TIMPs do hardly correlate with existing or early developing IF/TA in surveillance biopsies obtained within the first 6months post-transplant. This could be explained by the dynamic process of extracellular matrix remodeling, which seems to be active during acute tubulo-interstitial injury/inflammation, but not in quiescent IF/TA.
Resumo:
Congenital hepatic fibrosis has been described as a lethal disease with monogenic autosomal recessive inheritance in the Swiss Franches-Montagnes horse breed. We performed a genome-wide association study with 5 cases and 12 controls and detected an association on chromosome 20. Subsequent homozygosity mapping defined a critical interval of 952 kb harboring 10 annotated genes and loci including the polycystic kidney and hepatic disease 1 (autosomal recessive) gene (PKHD1). PKHD1 represents an excellent functional candidate as variants in this gene were identified in human patients with autosomal recessive polycystic kidney and hepatic disease (ARPKD) as well as several mouse and rat mutants. Whereas most pathogenic PKHD1 variants lead to polycystic defects in kidney and liver, a small subset of the human ARPKD patients have only liver symptoms, similar to our horses with congenital hepatic fibrosis. The PKHD1 gene is one of the largest genes in the genome with multiple alternative transcripts that have not yet been fully characterized. We sequenced the genomes of an affected foal and 46 control horses to establish a comprehensive list of variants in the critical interval. We identified two missense variants in the PKHD1 gene which were strongly, but not perfectly associated with congenital hepatic fibrosis. We speculate that reduced penetrance and/or potential epistatic interactions with hypothetical modifier genes may explain the imperfect association of the detected PKHD1 variants. Our data thus indicate that horses with congenital hepatic fibrosis represent an interesting large animal model for the liver-restricted subtype of human ARPKD.
Resumo:
BACKGROUND AND OBJECTIVES We investigated the effect of different breathing aids on ventilation distribution in healthy adults and subjects with cystic fibrosis (CF). METHODS In 11 healthy adults and 9 adults with CF electrical impedance tomography measurements were performed during spontaneous breathing, continuous positive airway pressure (CPAP) and positive expiratory pressure (PEP) therapy randomly applied in upright and lateral position. Spatial and temporal ventilation distribution was assessed. RESULTS The proportion of ventilation directed to the dependent lung significantly increased in lateral position compared to upright in healthy and CF. This effect was enhanced with CPAP but neutralised with PEP, whereas the effect of PEP was larger in the healthy group. Temporal ventilation distribution showed exactly the opposite with homogenisation during CPAP and increased inhomogeneity with PEP. CONCLUSIONS PEP shows distinct differences to CPAP with respect to its impact on ventilation distribution in healthy adults and CF subjects EIT might be used to individualise respiratory physiotherapy.
Resumo:
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible fibrotic lung disease, resulting in respiratory insufficiency and reduced survival. Pulmonary fibrosis is a result of repeated alveolar epithelial microinjuries, followed by abnormal regeneration and repair processes in the lung. Recently, stem cells and their secretome have been investigated as a novel therapeutic approach in pulmonary fibrosis. We evaluated the potential of induced pluripotent stem cells (iPSC) conditioned media (iPSC-cm) to regenerate and repair the alveolar epithelium in vitro and improve bleomycin induced lung injury in vivo. METHODS IPSC-cm was collected from cultured iPSC derived from human foreskin fibroblasts and its biological effects on alveolar epithelial wound repair was studied in an alveolar wound healing assay in vitro. Furthermore, iPSC-cm was intratracheally instilled 7 days after bleomycin induced injury in the rat lungs and histologically and biochemically assessed 7 days after instillation. RESULTS iPSC-cm increased alveolar epithelial wound repair in vitro compared with medium control. Intratracheal instillation of iPSC-cm in bleomycin-injured lungs reduced the collagen content and improved lung fibrosis in the rat lung in vivo. Profibrotic TGFbeta1 and alpha-smooth muscle actin (alpha-sma) expression were markedly reduced in the iPSC-cm treated group compared with control. Antifibrotic hepatocyte growth factor (HGF) was detected in iPSC-cm in biologically relevant levels, and specific inhibition of HGF in iPSC-cm attenuated the antifibrotic effect of iPSC-cm, indicating a central role of HGF in iPSC-cm. CONCLUSION iPSC-cm increased alveolar epithelial wound repair in vitro and attenuated bleomycin induced fibrosis in vivo, partially due to the presence of HGF and may represent a promising novel, cell free therapeutic option against lung injury and fibrosis.
Resumo:
Reactive oxygen species (ROS) have been implemented in the etiology of pulmonary fibrosis (PF) in systemic sclerosis. In the bleomycin model, we evaluated the role of acquired mutations in mitochondrial DNA (mtDNA) and respiratory chain defects as a trigger of ROS formation and fibrogenesis. Adult male Wistar rats received a single intratracheal instillation of bleomycin and their lungs were examined at different time points. Ashcroft scores, collagen and TGFβ1 levels documented a delayed onset of PF by day 14. In contrast, increased malon dialdehyde as a marker of ROS formation was detectable as early as 24 hours after bleomycin instillation and continued to increase. At day 7, lung tissue acquired significant amounts of mtDNA deletions, translating into a significant dysfunction of mtDNA-encoded, but not nucleus-encoded respiratory chain subunits. mtDNA deletions and markers of mtDNA-encoded respiratory chain dysfunction significantly correlated with pulmonary TGFβ1 concentrations and predicted PF in a multivariate model.