108 resultados para Dupont-White, Ch., 1807-1878.
Resumo:
BACKGROUND White matter (WM) fibers connect different brain regions and are critical for proper brain function. However, little is known about the cerebral blood flow in WM and its relation to WM microstructure. Recent improvements in measuring cerebral blood flow (CBF) by means of arterial spin labeling (ASL) suggest that the signal in white matter may be detected. Its implications for physiology needs to be extensively explored. For this purpose, CBF and its relation to anisotropic diffusion was analyzed across subjects on a voxel-wise basis with tract-based spatial statistics (TBSS) and also across white matter tracts within subjects. METHODS Diffusion tensor imaging and ASL were acquired in 43 healthy subjects (mean age = 26.3 years). RESULTS CBF in WM was observed to correlate positively with fractional anisotropy across subjects in parts of the splenium of corpus callosum, the right posterior thalamic radiation (including the optic radiation), the forceps major, the right inferior fronto-occipital fasciculus, the right inferior longitudinal fasciculus and the right superior longitudinal fasciculus. Furthermore, radial diffusivity correlated negatively with CBF across subjects in similar regions. Moreover, CBF and FA correlated positively across white matter tracts within subjects. CONCLUSION The currently observed findings on a macroscopic level might reflect the metabolic demand of white matter on a microscopic level involving myelination processes or axonal function. However, the exact underlying physiological mechanism of this relationship needs further evaluation.
Resumo:
Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity. In response to cold or exercise, brown fat cells also emerge in the white adipose tissue (WAT; also known as beige cells), a process known as browning. Here we show that the development of functional beige fat in the inguinal subcutaneous adipose tissue (ingSAT) and perigonadal visceral adipose tissue (pgVAT) is promoted by the depletion of microbiota either by means of antibiotic treatment or in germ-free mice. This leads to improved glucose tolerance and insulin sensitivity and decreased white fat and adipocyte size in lean mice, obese leptin-deficient (ob/ob) mice and high-fat diet (HFD)-fed mice. Such metabolic improvements are mediated by eosinophil infiltration, enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by the suppression of type 2 cytokine signaling, and they are reversed by recolonization of the antibiotic-treated or germ-free mice with microbes. These results provide insight into the microbiota-fat signaling axis and beige-fat development in health and metabolic disease.
Resumo:
BACKGROUND Stiff skin syndrome and systemic or localized scleroderma are cutaneous disorders characterized by dermal fibrosis and present clinically with induration of the skin, with or without joint, internal organ or vascular involvement. OBJECTIVES To provide clinical, histological and preliminary genetic analysis of two West Highland white terrier siblings presenting with indurated skin resembling stiff skin syndrome in humans. ANIMALS Two client owned full sibling West Highland white terriers from two different litters. METHODS Clinical examination, histopathological examination and whole genome sequencing analysis of affected and unaffected West Highland white terriers. RESULTS Affected dogs exhibited markedly indurated skin that was attached firmly to the underlying tissue and incomplete closure of the mouth and eyes. No abnormalities were found by neurological or orthopaedic examination, radiographs of the head or whole body computed tomography. Histologically, the dermis and pannicular septa were thickened by a marked increase in coarse collagen fibres and a mild to moderate increase in collagen fibre diameter. The syndrome most likely follows an autosomal recessive mode of inheritance. The sequence analysis did not reveal any obvious causative variant in the investigated candidate genes ADAMTSL2 and FBN1. CONCLUSION AND CLINICAL IMPORTANCE The clinical phenotype and histopathological features of two West Highland white terrier siblings resembled stiff skin syndrome in humans. Unlike in humans, or previously described beagles with stiff skin, there was no restriction of joint mobility. Genetic analysis did not detect a candidate causative variant and warrants further research.