127 resultados para Deep diving
Resumo:
Treatment of chronic myeloid leukemia (CML) with tyrosine kinase inhibitors has advanced to a stage where many patients achieve very low or undetectable levels of disease. Remarkably, some of these patients remain in sustained remission when treatment is withdrawn, suggesting that they may be at least operationally cured of their disease. Accurate definition of deep molecular responses (MRs) is therefore increasingly important for optimal patient management and comparison of independent data sets. We previously published proposals for broad standardized definitions of MR at different levels of sensitivity. Here we present detailed laboratory recommendations, developed as part of the European Treatment and Outcome Study for CML (EUTOS), to enable testing laboratories to score MR in a reproducible manner for CML patients expressing the most common BCR-ABL1 variants.Leukemia advance online publication, 27 February 2015; doi:10.1038/leu.2015.29.
Resumo:
We report on the EPICA Dronning Maud Land (East Antarctica) deep drilling operation. Starting with the scientific questions that led to the outline of the EPICA project, we introduce the setting of sister drillings at NorthGRIP and EPICA Dome C within the European ice-coring community. The progress of the drilling operation is described within the context of three parallel, deep-drilling operations, the problems that occurred and the solutions we developed. Modified procedures are described, such as the monitoring of penetration rate via cable weight rather than motor torque, and modifications to the system (e.g. closing the openings at the lower end of the outer barrel to reduce the risk of immersing the drill in highly concentrated chip suspension). Parameters of the drilling (e.g. core-break force, cutter pitch, chips balance, liquid level, core production rate and piece number) are discussed. We also review the operational mode, particularly in the context of achieved core length and piece length, which have to be optimized for drilling efficiency and core quality respectively. We conclude with recommendations addressing the design of the chip-collection openings and strictly limiting the cable-load drop with respect to the load at the start of the run.
Resumo:
BACKGROUND Drug-eluting balloons (DEB) may reduce infrapopliteal restenosis and reintervention rates versus percutaneous transluminal angioplasty (PTA) and improve wound healing/limb preservation. OBJECTIVES The goal of this clinical trial was to assess the efficacy and safety of IN.PACT Amphirion drug-eluting balloons (IA-DEB) compared to PTA for infrapopliteal arterial revascularization in patients with critical limb ischemia (CLI). METHODS Within a prospective, multicenter, randomized, controlled trial with independent clinical event adjudication and angiographic and wound core laboratories 358 CLI patients were randomized 2:1 to IA-DEB or PTA. The 2 coprimary efficacy endpoints through 12 months were clinically driven target lesion revascularization (CD-TLR) and late lumen loss (LLL). The primary safety endpoint through 6 months was a composite of all-cause mortality, major amputation, and CD-TLR. RESULTS Clinical characteristics were similar between the 2 groups. Significant baseline differences between the IA-DEB and PTA arms included mean lesion length (10.2 cm vs. 12.9 cm; p = 0.002), impaired inflow (40.7% vs. 28.8%; p = 0.035), and previous target limb revascularization (32.2% vs. 21.8%; p = 0.047). Primary efficacy results of IA-DEB versus PTA were CD-TLR of 9.2% versus 13.1% (p = 0.291) and LLL of 0.61 ± 0.78 mm versus 0.62 ± 0.78 mm (p = 0.950). Primary safety endpoints were 17.7% versus 15.8% (p = 0.021) and met the noninferiority hypothesis. A safety signal driven by major amputations through 12 months was observed in the IA-DEB arm versus the PTA arm (8.8% vs. 3.6%; p = 0.080). CONCLUSIONS In patients with CLI, IA-DEB had comparable efficacy to PTA. While primary safety was met, there was a trend towards an increased major amputation rate through 12 months compared to PTA. (Study of IN.PACT Amphirion™ Drug Eluting Balloon vs. Standard PTA for the Treatment of Below the Knee Critical Limb Ischemia [INPACT-DEEP]; NCT00941733).
Resumo:
Within the project “Tiefenschärfe – hochauflösende Vermes- sung Bodensee” a high-resolution seamless terrain model is created using airborne topobathymetric laserscanning and multibeam echosounder (MBES) techniques. The project visu- alizes the enormous wealth of features of underwater land- scapes of lakes. The combination of hydroacoustic (multibeam echosounder) and laser-optic (topobathymetric laserscan- ning) methods was used for the first time in a freshwater body of this size. Opportunities, limitations and restrictions of these high-resolution methods are presented.
Resumo:
The deeply eroded West Gondwana Orogen is a major continental collision zone that exposes numerous occurrences of deeply subducted rocks, such as eclogites. The position of these eclogites marks the suture zone between colliding cratons, and the age of metamorphism constrains the transition from subduction-dominated tectonics to continental collision and mountain building. Here we investigate the metamorphic conditions and age of high-pressure and ultrahigh-pressure eclogites from Mali, Togo and NE-Brazil and demonstrate that continental subduction occurred within 20 million years over at least a 2,500-km-long section of the orogen during the Ediacaran. We consider this to be the earliest evidence of large-scale deep-continental subduction and consequent appearance of Himalayan-scale mountains in the geological record. The rise and subsequent erosion of such mountains in the Late Ediacaran is perfectly timed to deliver sediments and nutrients that are thought to have been necessary for the subsequent evolution of sustainable life on Earth.
Resumo:
A time-lapse pressure tomography inversion approach is applied to characterize the CO2 plume development in a virtual deep saline aquifer. Deep CO2 injection leads to flow properties of the mixed-phase, which vary depending on the CO2 saturation. Analogous to the crossed ray paths of a seismic tomographic experiment, pressure tomography creates streamline patterns by injecting brine prior to CO2 injection or by injecting small amounts of CO2 into the two-phase (brine and CO2) system at different depths. In a first step, the introduced pressure responses at observation locations are utilized for a computationally rapid and efficient eikonal equation based inversion to reconstruct the heterogeneity of the subsurface with diffusivity (D) tomograms. Information about the plume shape can be derived by comparing D-tomograms of the aquifer at different times. In a second step, the aquifer is subdivided into two zones of constant values of hydraulic conductivity (K) and specific storage (Ss) through a clustering approach. For the CO2 plume, mixed-phase K and Ss values are estimated by minimizing the difference between calculated and “true” pressure responses using a single-phase flow simulator to reduce the computing complexity. Finally, the estimated flow property is converted to gas saturation by a single-phase proxy, which represents an integrated value of the plume. This novel approach is tested first with a doublet well configuration, and it reveals a great potential of pressure tomography based concepts for characterizing and monitoring deep aquifers, as well as the evolution of a CO2 plume. Still, field-testing will be required for better assessing the applicability of this approach.
Resumo:
The study of mass movements in lake sediments provides insights into past natural hazards at historic and prehistoric timescales. Sediments from the deep basin of Lake Geneva reveal a succession of six large-scale (volumes of 22 × 106 to 250 × 106 m3) mass-transport deposits, associated with five mass-movement events within 2600 years (4000 cal bp to 563 ad). The mass-transport deposits result from: (i) lateral slope failures (mass-transport deposit B at 3895 ± 225 cal bp and mass-transport deposits A and C at 3683 ± 128 cal bp); and (ii) Rhône delta collapses (mass-transport deposits D to G dated at 2650 ± 150 cal bp, 2185 ± 85 cal bp, 1920 ± 120 cal bp and 563 ad, respectively). Mass-transport deposits A and C were most probably triggered by an earthquake, whereas the Rhône delta collapses were likely to be due to sediment overload with a rockfall as the external trigger (mass-transport deposit G, the Tauredunum event in 563 ad known from historical records), an earthquake (mass-transport deposit E) or unknown external triggers (mass-transport deposits D and F). Independent of their origin and trigger mechanisms, numerical simulations show that all of these recorded mass-transport deposits are large enough to have generated at least metre-scale tsunamis during mass movement initiation. Since the Tauredunum event in 563 ad, two small-scale (volumes of 1 to 2 × 106 m3) mass-transport deposits (H and I) are present in the seismic record, both of which are associated with small lateral slope failures. Mass-transport deposits H and I might be related to earthquakes in Lausanne/Geneva (possibly) 1322 ad and Aigle 1584 ad, respectively. The sedimentary record of the deep basin of Lake Geneva, in combination with the historical record, show that during the past 3695 years, at least six tsunamis were generated by mass movements, indicating that the tsunami hazard in the Lake Geneva region should not be neglected, although such events are not frequent with a recurrence time of 0·0016 yr−1.
Resumo:
The asteroid 4 Vesta was recently found to have two large impact craters near its south pole, exposing subsurface material. Modelling suggested that surface material in the northern hemisphere of Vesta came from a depth of about 20 kilometres, whereas the exposed southern material comes from a depth of 60 to 100 kilometres. Large amounts of olivine from the mantle were not seen, suggesting that the outer 100 kilometres or so is mainly igneous crust. Here we analyse the data on Vesta and conclude that the crust–mantle boundary (or Moho) is deeper than 80 kilometres.
Resumo:
PURPOSE In traumatic brain injury, diffusion-weighted and diffusion tensor imaging of the brain are essential techniques for determining the pathology sustained and the outcome. Postmortem cross-sectional imaging is an established adjunct to forensic autopsy in death investigation. The purpose of this prospective study was to evaluate postmortem diffusion tensor imaging in forensics for its feasibility, influencing factors and correlation to the cause of death compared with autopsy. METHODS Postmortem computed tomography, magnetic resonance imaging, and diffusion tensor imaging with fiber tracking were performed in 10 deceased subjects. The Likert scale grading of colored fractional anisotropy maps was correlated to the body temperature and intracranial pathology to assess the diagnostic feasibility of postmortem diffusion tensor imaging and fiber tracking. RESULTS Optimal fiber tracking (>15,000 fiber tracts) was achieved with a body temperature at 10°C. Likert scale grading showed no linear correlation (P > 0.7) to fiber tract counts. No statistically significant correlation between total fiber count and postmortem interval could be observed (P = 0.122). Postmortem diffusion tensor imaging and fiber tracking allowed for radiological diagnosis in cases with shearing injuries but was impaired in cases with pneumencephalon and intracerebral mass hemorrhage. CONCLUSIONS Postmortem diffusion tensor imaging with fiber tracking provides an exceptional in situ insight "deep into the fibers" of the brain with diagnostic benefit in traumatic brain injury and axonal injuries in the assessment of the underlying cause of death, considering influencing factors for optimal imaging technique.
Resumo:
Navigation of deep space probes is most commonly operated using the spacecraft Doppler tracking technique. Orbital parameters are determined from a series of repeated measurements of the frequency shift of a microwave carrier over a given integration time. Currently, both ESA and NASA operate antennas at several sites around the world to ensure the tracking of deep space probes. Just a small number of software packages are nowadays used to process Doppler observations. The Astronomical Institute of the University of Bern (AIUB) has recently started the development of Doppler data processing capabilities within the Bernese GNSS Software. This software has been extensively used for Precise Orbit Determination of Earth orbiting satellites using GPS data collected by on-board receivers and for subsequent determination of the Earth gravity field. In this paper, we present the currently achieved status of the Doppler data modeling and orbit determination capabilities in the Bernese GNSS Software using GRAIL data. In particular we will focus on the implemented orbit determination procedure used for the combined analysis of Doppler and intersatellite Ka-band data. We show that even at this earlier stage of the development we can achieve an accuracy of few mHz on two-way S-band Doppler observation and of 2 µm/s on KBRR data from the GRAIL primary mission phase.
Resumo:
BACKGROUND: In equine laminitis, the deep digital flexor muscle (DDFM) appears to have increased muscle force, but evidence-based confirmation is lacking. OBJECTIVES: The purpose of this study was to test if the DDFM of laminitic equines has an increased muscle force detectable by needle electromyography interference pattern analysis (IPA). ANIMALS AND METHODS: The control group included six Royal Dutch Sport horses, three Shetland ponies and one Welsh pony [10 healthy, sound adults weighing 411 ± 217 kg (mean ± SD) and aged 10 ± 5 years]. The laminitic group included three Royal Dutch Sport horses, one Friesian, one Haflinger, one Icelandic horse, one Welsh pony, one miniature Appaloosa and six Shetland ponies (14 adults, weight 310 ± 178 kg, aged 13 ± 6 years) with acute/chronic laminitis. The electromyography IPA measurements included firing rate, turns/second (T), amplitude/turn (M) and M/T ratio. Statistical analysis used a general linear model with outcomes transformed to geometric means. RESULTS: The firing rate of the total laminitic group was higher than the total control group. This difference was smaller for the ponies compared to the horses; in the horses, the geometric mean difference of the laminitic group was 1.73 [geometric 95% confidence interval (CI) 1.29-2.32], and in the ponies this value was 1.09 (geometric 95% CI 0.82-1.45). CONCLUSION AND CLINICAL RELEVANCE: In human medicine, an increased firing rate is characteristic of increased muscle force. Thus, the increased firing rate of the DDFM in the context of laminitis suggests an elevated muscle force. However, this seems to be only a partial effect as in this study, the unchanged turns/second and amplitude/turn failed to prove the recruitment of larger motor units with larger amplitude motor unit potentials in laminitic equids.
Resumo:
OBJECTIVE To analyze the prevalence of urinary tract endometriosis (UTE) in patients with deep infiltrating endometriosis (DIE) and to define potential criteria for preoperative workup. DESIGN Retrospective study. SETTING University hospital. PATIENT(S) Six hundred ninety-seven patients with endometriosis. INTERVENTION(S) Excision of all endometriotic lesions. MAIN OUTCOME MEASURE(S) Correlation of preoperative features and intraoperative findings in patients with UTE. RESULT(S) Out of 213 patients presenting DIE, 52.6% suffered from UTE. In patients with ureteral endometriosis, symptoms were not specific. Among the patients with bladder endometriosis, 68.8% complained of urinary symptoms compared to 7.9% in the group of patients without UTE. In patients with rectovaginal endometriosis, the probability of ureterolysis showed a linear correlation with the size of the nodule. We found that 3 cm in diameter provided a specific cutoff value for the likelihood of ureteric involvement. CONCLUSION(S) The prevalence of UTE has often been underestimated. Preoperative questioning is important in the search for bladder endometriosis. The size of the nodule is one of the few reliable criteria in preoperative assessment that can suggest ureteric involvement. We propose a classification of ureteral endometriosis that will allow the standardization of terminology and help to compare the outcome of different surgical treatment in randomized studies.
Resumo:
Diet management is a key factor for the prevention and treatment of diet-related chronic diseases. Computer vision systems aim to provide automated food intake assessment using meal images. We propose a method for the recognition of already segmented food items in meal images. The method uses a 6-layer deep convolutional neural network to classify food image patches. For each food item, overlapping patches are extracted and classified and the class with the majority of votes is assigned to it. Experiments on a manually annotated dataset with 573 food items justified the choice of the involved components and proved the effectiveness of the proposed system yielding an overall accuracy of 84.9%.
Resumo:
No single mechanism can account for the full amplitude of past atmospheric carbon dioxide (CO2) concentration variability over glacial–interglacial cycles. A build-up of carbon in the deep ocean has been shown to have occurred during the Last Glacial Maximum. However, the mechanisms responsible for the release of the deeply sequestered carbon to the atmosphere at deglaciation, and the relative importance of deep ocean sequestration in regulating millennial-timescale variations in atmospheric CO2 concentration before the Last Glacial Maximum, have remained unclear. Here we present sedimentary redox-sensitive trace metal records from the Antarctic Zone of the Southern Ocean that provide a reconstruction of transient changes in deep ocean oxygenation and, by inference, respired carbon storage throughout the last glacial cycle. Our data suggest that respired carbon was removed from the abyssal Southern Ocean during the Northern Hemisphere cold phases of the deglaciation, when atmospheric CO2 concentration increased rapidly, reflecting—at least in part— a combination of dwindling iron fertilization by dust and enhanced deep ocean ventilation. Furthermore, our records show that the observed covariation between atmospheric CO2 concentration and abyssal Southern Ocean oxygenation was maintained throughout most of the past 80,000 years. This suggests that on millennial timescales deep ocean circulation and iron fertilization in the Southern Ocean played a consistent role in modifying atmospheric CO2 concentration.