120 resultados para Cartilage destruction
Resumo:
The significance of the adjacent cartilage in cartilage defect healing is not yet completely understood. Furthermore, it is unknown if the adjacent cartilage can somehow be influenced into responding after cartilage damage. The present study was undertaken to investigate whether the adjacent cartilage can be better sustained after microfracturing in a cartilage defect model in the stifle joint of sheep using a transcutaneous treatment concept (Vetdrop(®)). Carprofen and chito-oligosaccharids were added either as single components or as a mixture to a vehicle suspension consisting of a herbal carrier oil in a water-in-oil phase. This mixture was administered onto the skin with the aid of a specific applicator during 6 weeks in 28 sheep, allocated into 6 different groups, that underwent microfracturing surgery either on the left or the right medial femoral condyle. Two groups served as control and were either treated intravenously or sham treated with oxygen only. Sheep were sacrificed and their medial condyle histologically evaluated qualitatively and semi-quantitatively according to 4 different scoring systems (Mankin, ICRS, Little and O'Driscoll). The adjacent cartilage of animals of group 4 treated transcutaneously with vehicle, chito-oligosaccharids and carprofen had better histological scores compared to all the other groups (Mankin 3.3±0.8, ICRS 15.7±0.7, Little 9.0±1.4). Complete defect filling was absent from the transcutaneous treatment groups. The experiment suggests that the adjacent cartilage is susceptible to treatment and that the combination of vehicle, chitooligosaccharids and carprofen may sustain the adjacent cartilage during the recovery period.
Resumo:
OBJECTIVE Marked differences exist between human knee and ankle joints regarding risks and progression of osteoarthritis (OA). Pathomechanisms of degenerative joint disease may therefore differ in these joints, due to differences in tissue structure and function. Focussing on structural issues which are design goals for tissue engineering, we compared cell and matrix morphologies in different anatomical sites of adult human knee and ankle joints. METHODS Osteochondral explants were acquired from knee and ankle joints of deceased persons aged 20 to 40 years and analyzed for cell, matrix and tissue morphology using confocal and electron microscopy and unbiased stereological methods. Variations associated with joint (knee versus ankle) and biomechanical role (convex versus concave articular surfaces) were identified by 2-way analysis of variance and post-hoc analysis. RESULTS Knee cartilage exhibited higher cell densities in the superficial zone than ankle cartilage. In the transitional zone, higher cell densities were observed in association with convex versus concave articular surfaces, without significant differences between knee and ankle cartilage. Highly uniform cell and matrix morphologies were evident throughout the radial zone in the knee and ankle, regardless of tissue biomechanical role. Throughout the knee and ankle cartilage sampled, chondron density was remarkably constant at approximately 4.2×10(6) chondrons/cm(3). CONCLUSION Variation of cartilage cell and matrix morphologies with changing joint and biomechanical environments suggests that tissue structural adaptations are performed primarily by the superficial and transitional zones. Data may aid the development of site-specific cartilage tissue engineering, and help identify conditions where OA is likely to occur.
Resumo:
OBJECTIVE To measure concentrations of nitric oxide metabolites (nitrite-nitrate [NOt]) in cartilage, synovial membrane, and cranial cruciate ligament (CCL) in dogs and evaluate associations with osteoarthritis in dogs with CCL rupture. ANIMALS 46 dogs with CCL rupture and 54 control dogs without joint disease. PROCEDURE Tissue specimens for histologic examination and explant culture were harvested during surgery in the CCL group or immediately after euthanasia in the control group; NOt concentrations were measured in supernatant of explant cultures and compared among dogs with various degrees of osteoarthritis and between dogs with and without CCL rupture. RESULTS Osteoarthritic cartilage had significantly higher NOt concentration (1,171.6 nmol/g) than did healthy cartilage (491.0 nmol/g); NOt concentration was associated with severity of macroscopic and microscopic lesions. Synovial membrane NOt concentration did not differ between dogs with and without CCL rupture. Ruptured CCL produced less NOt than did intact ligaments. In control dogs, NOt concentrations were similar for intact ligaments (568.1 nmol/g) and articular cartilage (491.0 nmol/g). Synthesis of NOt was inhibited substantially by coincubation with inhibitors. CONCLUSIONS AND CLINICAL RELEVANCE Results suggest that NOt in canine joint tissues originates from the inducible nitric oxide synthase pathway. Nitric oxide metabolite production in cartilage was greater in dogs with osteoarthritis than in healthy dogs and was associated with lesion severity, suggesting that nitric oxide inhibitors may be considered as a treatment for osteoarthritis. The CCL produces substantial concentrations of NOt; the importance of this finding is unknown.
Resumo:
Fordyce granules of the oral mucosa are often discovered during routine dental examinations. They are considered anatomic variations and are typically seen on the labial and buccal mucosa in adults. The present case report describes for the first time in the literature an atypical location of an enlarged Fordyce granule with local bone destruction. The diagnostic process, surgical treatment, and follow-up are presented and discussed.
Resumo:
OBJECTIVE The repair of cartilaginous lesions within synovial joints is still an unresolved and weighty clinical problem. Although research activity in this area has been indefatigably sustained, no significant progress has been made during the past decade. The aim of this educational review is to heighten the awareness amongst students and scientists of the basic issues that must be tackled and resolved before we can hope to escape from the whirlpool of stagnation into which we have fallen: cartilage repair redivivus! DESIGN Articular-cartilage lesions may be induced traumatically (e.g., by sports injuries and occupational accidents) or pathologically during the course of a degenerative disease (e.g., osteoarthritis). This review addresses the biological basis of cartilage repair and surveys current trends in treatment strategies, focussing on those that are most widely adopted by orthopaedic surgeons [viz., abrasive chondroplasty, microfracturing/microdrilling, osteochondral grafting and autologous-chondrocyte implantation (ACI)]. Also described are current research activities in the field of cartilage-tissue engineering, which, as a therapeutic principle, holds more promise for success than any other experimental approach. RESULTS AND CONCLUSIONS Tissue engineering aims to reconstitute a tissue both structurally and functionally. This process can be conducted entirely in vitro, initially in vitro and then in vivo (in situ), or entirely in vivo. Three key constituents usually form the building blocks of such an approach: a matrix scaffold, cells, and signalling molecules. Of the proposed approaches, none have yet advanced beyond the phase of experimental development to the level of clinical induction. The hurdles that need to be surmounted for ultimate success are discussed.
Resumo:
After standard hip arthroplasty, an 82-year-old patient with previously undiagnosed diffuse idiopathic skeletal hyperostosis of the cervical spine experienced life-threatening side effects after use of a supraglottic airway device (i-gel). Extensive mucosal erosion and denudation of the cricoid cartilage caused postoperative supraglottic swelling and prolonged respiratory failure requiring tracheostomy. In this case report, we highlight the importance of evaluating risk factors for failure of supraglottic airway devices.
Resumo:
OBJECTIVE Arthroscopy is "the gold standard" for the diagnosis of knee cartilage lesions. However, it is invasive and expensive, and displays all the potential complications of an open surgical procedure. Ultra-high-field MRI now offers good opportunities for the indirect assessment of the integrity and structural changes of joint cartilage of the knee. The goal of the present study is to determine the site of early cartilaginous lesions in adults with non-traumatic knee pain. METHODS 3-T MRI examinations of 200 asymptomatic knees with standard and three-dimensional double-echo steady-state (3D-DESS) cartilage-specific sequences were prospectively studied for early degenerative lesions of the tibiofemoral joint. Lesions were classified and mapped using the modified Outerbridge and modified International Cartilage Repair Society classifications. RESULTS A total of 1437 lesions were detected: 56.1% grade I, 33.5% grade II, 7.2% grade III and 3.3% grade IV. Cartographically, grade I lesions were most common in the anteromedial tibial areas; grade II lesions in the anteromedial L5 femoral areas; and grade III in the centromedial M2 femoral areas. CONCLUSION 3-T MRI with standard and 3D-DESS cartilage-specific sequences demonstrated that areas predisposed to early osteoarthritis are the central, lateral and ventromedial tibial plateau, as well as the central and medial femoral condyle. ADVANCES IN KNOWLEDGE In contrast with previous studies reporting early cartilaginous lesions in the medial tibial compartment and/or in the medial femoral condyle, this study demonstrates that, regardless of grade, lesions preferentially occur at the L5 and M4 tibial and L5 and L2 femoral areas of the knee joint.
Resumo:
BACKGROUND Arthroscopy is considered as "the gold standard" for the diagnosis of traumatic intraarticular knee lesions. However, recent developments in magnetic resonance imaging (MRI) now offer good opportunities for the indirect assessment of the integrity and structural changes of the knee articular cartilage. The study was to investigate whether cartilage-specific sequences on a 3-Tesla MRI provide accurate assessment for the detection of cartilage defects. METHODS A 3-Tesla (3-T) MRI combined with three-dimensional double-echo steady-state (3D-DESS) cartilage specific sequences was performed on 210 patients with knee pain prior to knee arthroscopy. Sensitivity, specificity, and positive and negative predictive values of magnetic resonance imaging were calculated and correlated to the arthroscopic findings of cartilaginous lesions. Lesions were classified using the modified Outerbridge classification. RESULTS For the 210 patients (1260 cartilage surfaces: patella, trochlea, medial femoral condyle, medial tibia, lateral femoral condyle, lateral tibia) evaluated, the sensitivities, specificities, positive predictive values, and negative predictive values of 3-T MRI were 83.3, 99.8, 84.4, and 99.8 %, respectively, for the detection of grade IV lesions; 74.1, 99.6, 85.2, and 99.3 %, respectively, for grade III lesions; 67.9, 99.2, 76.6, and 98.2 %, respectively, for grade II lesions; and 8.8, 99.5, 80, and 92 %, respectively, for grade I lesions. CONCLUSIONS For grade III and IV lesions, 3-T MRI combined with 3D-DESS cartilage-specific sequences represents an accurate diagnostic tool. For grade II lesions, the technique demonstrates moderate sensitivity, while for grade I lesions, the sensitivity is limited to provide reliable diagnosis compared to knee arthroscopy.
Resumo:
Hips with a cam deformity are at risk for early cartilage degeneration, mainly in the anterolateral region of the joint. T1ρ MRI is a described technique for assessment of proteoglycan content in hyaline cartilage and subsequently early cartilage damage. In this study, 1.5 Tesla T1ρ MRI was performed on 20 asymptomatic hips with a cam deformity and compared to 16 healthy control hips. Cam deformity was defined as an alpha angle at 1:30 o'clock position over 60° and/or at 3:00 o'clock position over 50.5°. Hip cartilage was segmented and divided into four regions of interest (ROIs): anterolateral, anteromedial, posterolateral and posteromedial quadrants. Mean T1ρ value of the entire weight bearing cartilage in hips with a cam deformity (34.0 ± 4.6 ms) was significantly higher compared to control hips (31.3 ± 3.2 ms, p = 0.050). This difference reached significance in the anterolateral (p = 0.042) and posteromedial quadrants (p = 0.041). No significant correlation between the alpha angle and T1ρ values was detected. The results indicate cartilage damage occurs in hips with a cam deformity before symptoms occur. A significant difference in T1ρ values was found in the anterolateral quadrant, the area of direct engagement of the deformity, and in the posteromedial quadrant. To conclude, T1ρ MRI can detect early chondral damage in asymptomatic hips with a cam deformity. This article is protected by copyright. All rights reserved.
Resumo:
Cartilage is a tissue with limited self-healing potential. Hence, cartilage defects require surgical attention to prevent or postpone the development of osteoarthritis. For cell-based cartilage repair strategies, in particular autologous chondrocyte implantation, articular chondrocytes are isolated from cartilage and expanded in vitro to increase the number of cells required for therapy. During expansion, the cells lose the competence to autonomously form a cartilage-like tissue, that is in the absence of exogenously added chondrogenic growth factors, such as TGF-βs. We hypothesized that signaling elicited by autocrine and/or paracrine TGF-β is essential for the formation of cartilage-like tissue and that alterations within the TGF-β signaling pathway during expansion interfere with this process. Primary bovine articular chondrocytes were harvested and expanded in monolayer culture up to passage six and the formation of cartilage tissue was investigated in high density pellet cultures grown for three weeks. Chondrocytes expanded for up to three passages maintained the potential for autonomous cartilage-like tissue formation. After three passages, however, exogenous TGF-β1 was required to induce the formation of cartilage-like tissue. When TGF-β signaling was blocked by inhibiting the TGF-β receptor 1 kinase, the autonomous formation of cartilage-like tissue was abrogated. At the initiation of pellet culture, chondrocytes from passage three and later showed levels of transcripts coding for TGF-β receptors 1 and 2 and TGF-β2 to be three-, five- and five-fold decreased, respectively, as compared to primary chondrocytes. In conclusion, the autonomous formation of cartilage-like tissue by expanded chondrocytes is dependent on signaling induced by autocrine and/or paracrine TGF-β. We propose that a decrease in the expression of the chondrogenic growth factor TGF-β2 and of the TGF-β receptors in expanded chondrocytes accounts for a decrease in the activity of the TGF-β signaling pathway and hence for the loss of the potential for autonomous cartilage-like tissue formation.
Resumo:
Cell-cell intercalation is used in several developmental processes to shape the normal body plan. There is no clear evidence that intercalation is involved in pathologies. Here we use the proto-oncogene myc to study a process analogous to early phase of tumour expansion: myc-induced cell competition. Cell competition is a conserved mechanism driving the elimination of slow-proliferating cells (so-called 'losers') by faster-proliferating neighbours (so-called 'winners') through apoptosis and is important in preventing developmental malformations and maintain tissue fitness. Here we show, using long-term live imaging of myc-driven competition in the Drosophila pupal notum and in the wing imaginal disc, that the probability of elimination of loser cells correlates with the surface of contact shared with winners. As such, modifying loser-winner interface morphology can modulate the strength of competition. We further show that elimination of loser clones requires winner-loser cell mixing through cell-cell intercalation. Cell mixing is driven by differential growth and the high tension at winner-winner interfaces relative to winner-loser and loser-loser interfaces, which leads to a preferential stabilization of winner-loser contacts and reduction of clone compactness over time. Differences in tension are generated by a relative difference in F-actin levels between loser and winner junctions, induced by differential levels of the membrane lipid phosphatidylinositol (3,4,5)-trisphosphate. Our results establish the first link between cell-cell intercalation induced by a proto-oncogene and how it promotes invasiveness and destruction of healthy tissues.