107 resultados para COMBINED PHARMACOTHERAPY
Resumo:
BACKGROUND AND OBJECTIVE: Combined spinal epidural analgesia is effective for fast relief of severe labour pain but has been associated with worrisome decreases in fetal heart rate. Since the reasons for this phenomenon remain elusive, some anaesthesiologists may abstain from using this technique. We postulated that factors unrelated to the neuraxial technique could play a role in the decrease in fetal heart rate. To our knowledge, no prospective study has previously looked into this possibility. METHODS: We collected prospective data on 223 consecutive patients who received combined spinal epidural analgesia (123) or epidural analgesia (100). Maternal blood pressure, analogue pain scores, exogenous infusion of oxytocin, cervical dilatation, maternal age, parity and ethnicity were collected and correlated with the occurrence of decreases in fetal heart rate post combined spinal epidural. RESULTS: Univariate analysis showed a correlation between the incidence of fetal bradycardia and higher maternal pain scores, older maternal age, and combined spinal epidural analgesia. Multivariate analysis revealed that only pain scores and maternal age were independent predictors of fetal bradycardia post neuraxial blockade. CONCLUSIONS: Maternal pain scores and older maternal age are factors unrelated to the neuraxial technique that are independent predictors of fetal bradycardia after neuraxial analgesia for labour.
Resumo:
Due to the inherent limitations of DXA, assessment of the biomechanical properties of vertebral bodies relies increasingly on CT-based finite element (FE) models, but these often use simplistic material behaviour and/or single loading cases. In this study, we applied a novel constitutive law for bone elasticity, plasticity and damage to FE models created from coarsened pQCT images of human vertebrae, and compared vertebral stiffness, strength and damage accumulation for axial compression, anterior flexion and a combination of these two cases. FE axial stiffness and strength correlated with experiments and were linearly related to flexion properties. In all loading modes, damage localised preferentially in the trabecular compartment. Damage for the combined loading was higher than cumulated damage produced by individual compression and flexion. In conclusion, this FE method predicts stiffness and strength of vertebral bodies from CT images with clinical resolution and provides insight into damage accumulation in various loading modes.