133 resultados para Blackwell family (Robert Blackwell, 1730-1789)
Resumo:
Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins or feeding deterrents. We developed an ultra-high-pressure liquid chromatography time-of-flight mass spectrometry (UHPLC-TOF-MS)-based metabolomics approach to evaluate local and systemic herbivore-induced changes in maize leaves, sap, roots and root exudates without any prior assumptions about their function. Thirty-two differentially regulated compounds were identified from Spodoptera littoralis-infested maize seedlings and isolated for structure assignment by microflow nuclear magnetic resonance (CapNMR). Nine compounds were quantified by a high throughput direct nano-infusion tandem mass spectrometry/mass spectrometry (MS/MS) method. Leaf infestation led to a marked local increase of 1,3-benzoxazin-4-ones, phospholipids, N-hydroxycinnamoyltyramines, azealic acid and tryptophan. Only few changes were found in the root metabolome, but 1,3-benzoxazin-4-ones increased in the vascular sap and root exudates. The role of N-hydroxycinnamoyltyramines in plant–herbivore interactions is unknown, and we therefore tested the effect of the dominating p-coumaroyltyramine on S. littoralis. Unexpectedly, p-coumaroyltyramine was metabolized by the larvae and increased larval growth, possibly by providing additional nitrogen to the insect. Taken together, this study illustrates that herbivore attack leads to the induction of metabolites that can have contrasting effects on herbivore resistance in the leaves and roots.
Resumo:
Germline mutation testing in patients with colorectal cancer (CRC) is offered only to a subset of patients with a clinical presentation or tumor histology suggestive of familial CRC syndromes, probably underestimating familial CRC predisposition. The aim of our study was to determine whether unbiased screening of newly diagnosed CRC cases with next generation sequencing (NGS) increases the overall detection rate of germline mutations. We analyzed 152 consecutive CRC patients for germline mutations in 18 CRC-associated genes using NGS. All patients were also evaluated for Bethesda criteria and all tumors were investigated for microsatellite instability, immunohistochemistry for mismatch repair proteins and the BRAF*V600E somatic mutation. NGS based sequencing identified 27 variants in 9 genes in 23 out of 152 patients studied (18%). Three of them were already reported as pathogenic and 12 were class 3 germline variants with an uncertain prediction of pathogenicity. Only 1 of these patients fulfilled Bethesda criteria and had a microsatellite instable tumor and an MLH1 germline mutation. The others would have been missed with current approaches: 2 with a MSH6 premature termination mutation and 12 uncertain, potentially pathogenic class 3 variants in APC, MLH1, MSH2, MSH6, MSH3 and MLH3. The higher NGS mutation detection rate compared with current testing strategies based on clinicopathological criteria is probably due to the large genetic heterogeneity and overlapping clinical presentation of the various CRC syndromes. It can also identify apparently nonpenetrant germline mutations complicating the clinical management of the patients and their families.
Resumo:
In response to herbivore attack, plants mobilize chemical defenses and release distinct bouquets of volatiles. Aboveground herbivores are known to use changes in leaf volatile patterns to make foraging decisions, but it remains unclear whether belowground herbivores also use volatiles to select suitable host plants. We therefore investigated how above- and belowground infestation affects the performance of the root feeder Diabrotica virgifera virgifera, and whether the larvae of this specialized beetle are able to use volatile cues to assess from a distance whether a potential host plant is already under herbivore attack. Diabrotica virgifera larvae showed stronger growth on roots previously attacked by conspecific larvae, but performed more poorly on roots of plants whose leaves had been attacked by larvae of the moth Spodoptera littoralis. Fittingly, D. virgifera larvae were attracted to plants that were infested with conspecifics, whereas they avoided plants that were attacked by S. littoralis. We identified (E)-β-caryophyllene, which is induced by D. virgifera, and ethylene, which is suppressed by S. littoralis, as two signals used by D. virgifera larvae to locate plants that are most suitable for their development. Our study demonstrates that soil-dwelling insects can use herbivore-induced changes in root volatile emissions to identify suitable host plants.
Resumo:
he most valuable organs of plants are often particularly rich in essential elements, but also very well defended. This creates a dilemma for herbivores that need to maximise energy intake while minimising intoxication. We investigated how the specialist root herbivore Diabrotica virgifera solves this conundrum when feeding on wild and cultivated maize plants. We found that crown roots of maize seedlings were vital for plant development and, in accordance, were rich in nutritious primary metabolites and contained higher amounts of the insecticidal 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and the phenolic compound chlorogenic acid. The generalist herbivores Diabrotica balteata and Spodoptera littoralis were deterred from feeding on crown roots, whereas the specialist D. virgifera preferred and grew best on these tissues. Using a 1,4-benzoxazin-3-one-deficient maize mutant, we found that D. virgifera is resistant to DIMBOA and other 1,4-benzoxazin-3-ones and that it even hijacks these compounds to optimally forage for nutritious roots
Resumo:
Albino phenotypes are documented in various species including the American mink. In other species the albino phenotypes are associated with tyrosinase (TYR) gene mutations; therefore TYR was considered the candidate gene for albinism in mink. Four microsatellite markers were chosen in the predicted region of the TYR gene. Genotypes at the markers Mvi6025 and Mvi6034 were found to be associated with the albino phenotype within an extended half-sib family. A BAC clone containing Mvi6034 was mapped to chromosome 7q1.1-q1.3 by fluorescent in situ hybridization. Subsequent analysis of genomic TYR sequences from wild-type and albino mink samples identified a nonsense mutation in exon 1, which converts a TGT codon encoding cysteine to a TGA stop codon (c.138T>A, p.C46X; EU627590). The mutation truncates more than 90% of the normal gene product including the putative catalytic domains. The results indicate that the nonsense mutation is responsible for the albino phenotype in the American mink.
Resumo:
BACKGROUND AND OBJECTIVE Connective tissue grafts are frequently applied, together with Emdogain(®) , for root coverage. However, it is unknown whether fibroblasts from the gingiva and from the palate respond similarly to Emdogain. The aim of this study was therefore to evaluate the effect of Emdogain(®) on fibroblasts from palatal and gingival connective tissue using a genome-wide microarray approach. MATERIAL AND METHODS Human palatal and gingival fibroblasts were exposed to Emdogain(®) and RNA was subjected to microarray analysis followed by gene ontology screening with Database for Annotation, Visualization and Integrated Discovery functional annotation clustering, Kyoto Encyclopedia of Genes and Genomes pathway analysis and the Search Tool for the Retrieval of Interacting Genes/Proteins functional protein association network. Microarray results were confirmed by quantitative RT-PCR analysis. RESULTS The transcription levels of 106 genes were up-/down-regulated by at least five-fold in both gingival and palatal fibroblasts upon exposure to Emdogain(®) . Gene ontology screening assigned the respective genes into 118 biological processes, six cellular components, eight molecular functions and five pathways. Among the striking patterns observed were the changing expression of ligands targeting the transforming growth factor-beta and gp130 receptor family as well as the transition of mesenchymal epithelial cells. Moreover, Emdogain(®) caused changes in expression of receptors for chemokines, lipids and hormones, and for transcription factors such as SMAD3, peroxisome proliferator-activated receptor gamma and those of the ETS family. CONCLUSION The present data suggest that Emdogain(®) causes substantial alterations in gene expression, with similar patterns observed in palatal and gingival fibroblasts.
Resumo:
Plants can tolerate leaf-herbivore attack through metabolic reconfigurations that allow for the rapid regrowth of lost leaves. Several studies indicate that root-attacked plants can re-allocate resources to the aboveground parts. However, the connection between tolerance and root regrowth remains poorly understood. We investigated the timing and extent of root regrowth of tolerant and susceptible lines of maize, Zea mays L. (Poaceae), attacked by the western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), in the laboratory and the field. Infested tolerant maize plants produced more root biomass and even overcompensated for the lost roots, whereas this effect was absent in susceptible lines. Furthermore, the tolerant plants slowed growth of new roots in the greenhouse and in the field 4–8 days after infestation, whereas susceptible plants slowed growth of new roots only in the field and only after 12 days of infestation. The quick response of tolerant lines may have enabled them to escape root attack by starving the herbivores and by saving resources for regrowth after the attack had ceased. We conclude that both timing and the extent of regrowth may determine plant tolerance to root herbivory.
Resumo:
Determining links between plant defence strategies is important to understand plant evolution and to optimize crop breeding strategies. Although several examples of synergies and trade-offs between defence traits are known for plants that are under attack by multiple organisms, few studies have attempted to measure correlations of defensive strategies using specific single attackers. Such links are hard to detect in natural populations because they are inherently confounded by the evolutionary history of different ecotypes. We therefore used a range of 20 maize inbred lines with considerable differences in resistance traits to determine if correlations exist between leaf and root resistance against pathogens and insects. Aboveground resistance against insects was positively correlated with the plant's capacity to produce volatiles in response to insect attack. Resistance to herbivores and resistance to a pathogen, on the other hand, were negatively correlated. Our results also give first insights into the intraspecific variability of root volatiles release in maize and its positive correlation with leaf volatile production. We show that the breeding history of the different genotypes (dent versus flint) has influenced several defensive parameters. Taken together, our study demonstrates the importance of genetically determined synergies and trade-offs for plant resistance against insects and pathogens.
Resumo:
Plants attacked by leaf herbivores release volatile organic compounds (VOCs) both locally from the wounded site and systemically from non-attacked tissues. These volatiles serve as attractants for predators and parasitoids. This phenomenon is well described for plant leaves, but systemic induction of VOCs in the roots has remained unstudied. We assessed the spatial and temporal activation of the synthesis and release of (E)-β-caryophyllene (EβC) in maize roots upon feeding by larvae of Diabrotica virgifera virgifera, as well as the importance of systemically produced EβC for the attraction of the entomopathogenic nematode Heterorhabditis megidis. The production of EβC was found to be significantly stronger at the site of attack than in non-attacked tissues. A weak, but significant, increase in transcriptional activity of the EβC synthase gene tps23 and a corresponding increase in EβC content were observed in the roots above the feeding site and in adjacent roots, demonstrating for the first time that herbivory triggers systemic production of a volatile within root systems. In belowground olfactometers, the nematodes were significantly more attracted towards local feeding sites than systemically induced roots. The possible advantages and disadvantages of systemic volatile signalling in roots are discussed.
Resumo:
Ethylene responsive factors (ERFs) are a large family of plant-specific transcription factors that are involved in the regulation of plant development and stress responses. However, little to nothing is known about their role in herbivore-induced defense. We discovered a nucleus-localized ERF gene in rice (Oryza sativa), OsERF3, that was rapidly up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis. Antisense and over-expression of OsERF3 revealed that it positively affects transcript levels of two mitogen-activated protein kinases (MAPKs) and two WRKY genes as well as concentrations of jasmonate (JA), salicylate (SA) and the activity of trypsin protease inhibitors (TrypPIs). OsERF3 was also found to mediate the resistance of rice to SSB. On the other hand, OsERF3 was slightly suppressed by the rice brown planthopper (BPH) Nilaparvata lugens (Stål) and increased susceptibility to this piercing sucking insect, possibly by suppressing H2O2 biosynthesis. We propose that OsERF3 affects early components of herbivore-induced defense responses by suppressing MAPK repressors and modulating JA, SA, ethylene and H2O2 pathways as well as plant resistance. Our results also illustrate that OsERF3 acts as a central switch that gears the plant’s metabolism towards an appropriate response to chewing or piercing/sucking insects.
Resumo:
Peritoneal transport characteristics and residual renal function require regular control and subsequent adjustment of the peritoneal dialysis (PD) prescription. Prescription models shall facilitate the prediction of the outcome of such adaptations for a given patient. In the present study, the prescription model implemented in the PatientOnLine software was validated in patients requiring a prescription change. This multicenter, international prospective cohort study with the aim to validate a PD prescription model included patients treated with continuous ambulatory peritoneal dialysis. Patients were examined with the peritoneal function test (PFT) to determine the outcome of their current prescription and the necessity for a prescription change. For these patients, a new prescription was modeled using the PatientOnLine software (Fresenius Medical Care, Bad Homburg, Germany). Two to four weeks after implementation of the new PD regimen, a second PFT was performed. The validation of the prescription model included 54 patients. Predicted and measured peritoneal Kt/V were 1.52 ± 0.31 and 1.66 ± 0.35, and total (peritoneal + renal) Kt/V values were 1.96 ± 0.48 and 2.06 ± 0.44, respectively. Predicted and measured peritoneal creatinine clearances were 42.9 ± 8.6 and 43.0 ± 8.8 L/1.73 m2/week and total creatinine clearances were 65.3 ± 26.0 and 63.3 ± 21.8 L/1.73 m2/week, respectively. The analysis revealed a Pearson's correlation coefficient for peritoneal Kt/V of 0.911 and Lin's concordance coefficient of 0.829. The value of both coefficients was 0.853 for peritoneal creatinine clearance. Predicted and measured daily net ultrafiltration was 0.77 ± 0.49 and 1.16 ± 0.63 L/24 h, respectively. Pearson's correlation and Lin's concordance coefficient were 0.518 and 0.402, respectively. Predicted and measured peritoneal glucose absorption was 125.8 ± 38.8 and 79.9 ± 30.7 g/24 h, respectively, and Pearson's correlation and Lin's concordance coefficient were 0.914 and 0.477, respectively. With good predictability of peritoneal Kt/V and creatinine clearance, the present model provides support for individual dialysis prescription in clinical practice. Peritoneal glucose absorption and ultrafiltration are less predictable and are likely to be influenced by additional clinical factors to be taken into consideration.
Resumo:
BACKGROUND An increased body mass index (BMI) is associated with a high risk of cardiovascular disease and reduction in life expectancy. However, several studies reported improved clinical outcomes in obese patients treated for cardiovascular diseases. The aim of the present study is to investigate the impact of BMI on long-term clinical outcomes after implantation of zotarolimus eluting stents. METHODS Individual patient data were pooled from the RESOLUTE Clinical Program comprising five trials worldwide. The study population was sorted according to BMI tertiles and clinical outcomes were evaluated at 2-year follow-up. RESULTS Data from a total of 5,127 patients receiving the R-ZES were included in the present study. BMI tertiles were as follow: I tertile (≤ 25.95 kg/m(2) -Low or normal weight) 1,727 patients; II tertile (>25.95 ≤ 29.74 kg/m(2) -overweight) 1,695 patients, and III tertile (>29.74 kg/m(2) -obese) 1,705 patients. At 2-years follow-up no difference was found for patients with high BMI (III tertile) compared with patients with normal or low BMI (I tertile) in terms of target lesion failure (I-III tertile, HR [95% CI] = 0.89 [0.69, 1.14], P = 0.341; major adverse cardiac events (I-III tertile, HR [95% CI] = 0.90 [0.72, 1.14], P = 0.389; cardiac death (I-III tertile, HR [95% CI] = 1.20 [0.73, 1.99], P = 0.476); myocardial infarction (I-III tertile, HR [95% CI] = 0.86 [0.55, 1.35], P = 0.509; clinically-driven target lesion revascularization (I-III tertile, HR [95% CI] = 0.75 [0.53, 1.08], P = 0.123; definite or probable stent thrombosis (I-III tertile, HR [95% CI] = 0.98 [0.49, 1.99], P = 0.964. CONCLUSIONS In the present study, the patients' body mass index was found to have no impact on long-term clinical outcomes after coronary artery interventions.
Resumo:
Die photodynamische Therapie (PDT) gehört zu den Standardverfahren in der Therapie aktinischer Keratosen (AK). Bei der Tageslicht-PDT (Daylight PDT, DL-PDT) mit MAL-Creme handelt es sich um eine neuere Entwicklung, bei der anstelle eines Belichtungssystems das Tageslicht zur Aktivierung des Photosensibilisators genutzt wird. Der vorliegende Review fasst die aktuelle Studienlage basierend auf einer selektiven Literaturrecherche zusammen, fokussiert auf praktische Aspekte in der Durchführung und reflektiert insbesondere auch die Expertenerfahrung der Autoren mit der DL-PDT. Studiendaten zeigen, dass die DL-PDT der konventionellen PDT in ihrer Wirksamkeit nicht unterlegen ist. Sie ist jedoch signifikant besser verträglich, da sie zu deutlich weniger Schmerzen während der Therapie führt. Sie kann in Mitteleuropa von März bis Oktober sowohl an bewölkten als auch an sonnigen Tagen durchgeführt werden. Hierbei ist auf UV-Schutz auch der nicht behandelten Körperareale zu achten. Die Außentemperatur sollte 10°C nicht unterschreiten. An heißen Tagen sollte ein Aufenthalt im Schatten, soweit erforderlich, eingeplant werden. Die DL-PDT mit MAL ist u. a. für Patienten mit Feldkanzerisierung und/oder negativer Schmerzerfahrung bei der cPDT geeignet und stellt eine sinnvolle Ergänzung der aktuellen Therapiemöglichkeiten dar.
Resumo:
The wound healing promoting effect of negative wound pressure therapies (NPWT) takes place at the wound interface. The use of bioactive substances at this site represents a major research area for the development of future NPWT therapies. To assess wound healing kinetics in pressure ulcers treated by NPWT with or without the use of a thin interface membrane consisting of poly-N-acetyl glucosamine nanofibers (sNAG) a prospective randomized clinical trial was performed. The safety of the combination of NPWT and sNAG was also assessed in patients treated with antiplatelet drugs. In the performed study, the combination of NPWT and sNAG in 10 patients compared to NPWT alone in 10 patients promoted wound healing due to an improved contraction of the wound margins (p = 0.05) without a change in wound epithelization. In 6 patients treated with antiplatelet drugs no increased wound bleeding was observed in patients treated by NPWT and sNAG. In conclusion, the application of thin membranes of sNAG nanofibers at the wound interface using NPWT was safe and augmented the action of NPWT leading to improved wound healing due to a stimulation of wound contraction.
Resumo:
INTRODUCTION Daylight-mediated photodynamic therapy has been shown to be an effective therapy for actinic keratoses (AKs) and a simple and tolerable treatment procedure in three randomized Scandinavian studies and two recent Phase III randomized controlled studies in Australia and Europe. OBJECTIVES To establish consensus recommendations for the use of daylight photodynamic therapy (DL-PDT) using topical methyl aminolaevulinate (MAL) in European patients with AKs. METHODS The DL-PDT consensus recommendations were developed on behalf of the European Society for Photodynamic Therapy in Dermatology and comprised of 10 dermatologists from different European countries with experience in how to treat AK patients with PDT. Consensus was developed based on literature review and experience of the experts in the treatment of AK using DL-PDT. RESULTS The recommendations arising from this panel of experts provide general guidance on the use of DL-PDT as a dermatological procedure with specific guidance regarding patient selection, therapeutic indications, when to treat, pre-treatment skin preparation, MAL application and daylight exposure for patients with AK in different countries of Europe. CONCLUSIONS This consensus recommendation provides a framework for physicians to perform DL-PDT with MAL cream while ensuring efficiency and safety in the treatment of patients with AK in different European countries.