148 resultados para Auditory Localization
Resumo:
The present study was designed to elucidate sex-related differences in two basic auditory and one basic visual aspect of sensory functioning, namely sensory discrimination of pitch, loudness, and brightness. Although these three aspects of sensory functioning are of vital importance in everyday life, little is known about whether men and women differ from each other in these sensory functions. Participants were 100 male and 100 female volunteers ranging in age from 18 to 30 years. Since sensory sensitivity may be positively related to individual levels of intelligence and musical experience, measures of psychometric intelligence and musical background were also obtained. Reliably better performance for men compared to women was found for pitch and loudness, but not for brightness discrimination. Furthermore, performance on loudness discrimination was positively related to psychometric intelligence, while pitch discrimination was positively related to both psychometric intelligence and levels of musical training. Additional regression analyses revealed that each of three predictor variables (sex, psychometric intelligence, and musical training) accounted for a statistically significant portion of unique variance in pitch discrimination. With regard to loudness discrimination, regression analysis yielded a statistically significant portion of unique variance for sex as a predictor variable, whereas psychometric intelligence just failed to reach statistical significance. The potential influence of sex hormones on sex-related differences in sensory functions is discussed.
Resumo:
This study deals with indoor positioning using GSM radio, which has the distinct advantage of wide coverage over other wireless technologies. In particular, we focus on passive localization systems that are able to achieve high localization accuracy without any prior knowledge of the indoor environment or the tracking device radio settings. In order to overcome these challenges, newly proposed localization algorithms based on the exploitation of the received signal strength (RSS) are proposed. We explore the effects of non-line-of-sight communication links, opening and closing of doors, and human mobility on RSS measurements and localization accuracy. We have implemented the proposed algorithms on top of software defined radio systems and carried out detailed empirical indoor experiments. The performance results show that the proposed solutions are accurate with average localization errors between 2.4 and 3.2 meters.
Resumo:
OBJECTIVE To further determine the causes of variable outcome from deep brain stimulation of the subthalamic nucleus (DBS-STN) in patients with Parkinson disease (PD). METHODS Data were obtained from our cohort of 309 patients with PD who underwent DBS-STN between 1996 and 2009. We examined the relationship between the 1-year motor, cognitive, and psychiatric outcomes and (1) preoperative PD clinical features, (2) MRI measures, (3) surgical procedure, and (4) locations of therapeutic contacts. RESULTS Pre- and postoperative results were obtained in 262 patients with PD. The best motor outcome was obtained when stimulating contacts were located within the STN as compared with the zona incerta (64% vs 49% improvement). Eighteen percent of the patients presented a postoperative cognitive decline, which was found to be principally related to the surgical procedure. Other factors predictive of poor cognitive outcome were perioperative confusion and psychosis. Nineteen patients showed a stimulation-induced hypomania, which was related to both the form of the disease (younger age, shorter disease duration, higher levodopa responsiveness) and the ventral contact location. Postoperative depression was more frequent in patients already showing preoperative depressive and/or residual axial motor symptoms. CONCLUSION In this homogeneous cohort of patients with PD, we showed that (1) the STN is the best target to improve motor symptoms, (2) postoperative cognitive deficit is mainly related to the surgery itself, and (3) stimulation-induced hypomania is related to a combination of both the disease characteristics and a more ventral STN location.
Resumo:
The present study investigated the relationship between psychometric intelligence and temporal resolution power (TRP) as simultaneously assessed by auditory and visual psychophysical timing tasks. In addition, three different theoretical models of the functional relationship between TRP and psychometric intelligence as assessed by means of the Adaptive Matrices Test (AMT) were developed. To test the validity of these models, structural equation modeling was applied. Empirical data supported a hierarchical model that assumed auditory and visual modality-specific temporal processing at a first level and amodal temporal processing at a second level. This second-order latent variable was substantially correlated with psychometric intelligence. Therefore, the relationship between psychometric intelligence and psychophysical timing performance can be explained best by a hierarchical model of temporal information processing.
Resumo:
We provide a novel search technique which uses a hierarchical model and a mutual information gain heuristic to efficiently prune the search space when localizing faces in images. We show exponential gains in computation over traditional sliding window approaches, while keeping similar performance levels.
Resumo:
BACKGROUND: Accurate projection of implanted subdural electrode contacts in presurgical evaluation of pharmacoresistant epilepsy cases by invasive EEG is highly relevant. Linear fusion of CT and MRI images may display the contacts in the wrong position due to brain shift effects. OBJECTIVE: A retrospective study in five patients with pharmacoresistant epilepsy was performed to evaluate whether an elastic image fusion algorithm can provide a more accurate projection of the electrode contacts on the pre-implantation MRI as compared to linear fusion. METHODS: An automated elastic image fusion algorithm (AEF), a guided elastic image fusion algorithm (GEF), and a standard linear fusion algorithm (LF) were used on preoperative MRI and post-implantation CT scans. Vertical correction of virtual contact positions, total virtual contact shift, corrections of midline shift and brain shifts due to pneumencephalus were measured. RESULTS: Both AEF and GEF worked well with all 5 cases. An average midline shift of 1.7mm (SD 1.25) was corrected to 0.4mm (SD 0.8) after AEF and to 0.0mm (SD 0) after GEF. Median virtual distances between contacts and cortical surface were corrected by a significant amount, from 2.3mm after LF to 0.0mm after AEF and GEF (p<.001). Mean total relative corrections of 3.1 mm (SD 1.85) after AEF and 3.0mm (SD 1.77) after GEF were achieved. The tested version of GEF did not achieve a satisfying virtual correction of pneumencephalus. CONCLUSION: The technique provided a clear improvement in fusion of pre- and post-implantation scans, although the accuracy is difficult to evaluate.
Resumo:
In patients diagnosed with pharmaco-resistant epilepsy, cerebral areas responsible for seizure generation can be defined by performing implantation of intracranial electrodes. The identification of the epileptogenic zone (EZ) is based on visual inspection of the intracranial electroencephalogram (IEEG) performed by highly qualified neurophysiologists. New computer-based quantitative EEG analyses have been developed in collaboration with the signal analysis community to expedite EZ detection. The aim of the present report is to compare different signal analysis approaches developed in four different European laboratories working in close collaboration with four European Epilepsy Centers. Computer-based signal analysis methods were retrospectively applied to IEEG recordings performed in four patients undergoing pre-surgical exploration of pharmaco-resistant epilepsy. The four methods elaborated by the different teams to identify the EZ are based either on frequency analysis, on nonlinear signal analysis, on connectivity measures or on statistical parametric mapping of epileptogenicity indices. All methods converge on the identification of EZ in patients that present with fast activity at seizure onset. When traditional visual inspection was not successful in detecting EZ on IEEG, the different signal analysis methods produced highly discordant results. Quantitative analysis of IEEG recordings complement clinical evaluation by contributing to the study of epileptogenic networks during seizures. We demonstrate that the degree of sensitivity of different computer-based methods to detect the EZ in respect to visual EEG inspection depends on the specific seizure pattern.
Resumo:
OBJECTIVE To evaluate the accuracy of neurologic examination versus magnetic resonance imaging (MRI) in localization of cervical disk herniation and evaluate the usefulness of withdrawal reflex testing in dogs. DESIGN Retrospective case series. ANIMALS 35 client-owned dogs with a single-level cervical disk herniation as determined via MRI. PROCEDURES 1 of 2 board-certified neurologists performed a complete neurologic examination in each dog. Clinical signs of a cervical lesion included evidence of neck pain and tetraparesis. The withdrawal reflex was used for neuroanatomic localization (C1-C5 or C6-T2). Agreement between results of neurologic and MRI examinations was determined. RESULTS Agreement between neurologic and MRI diagnoses was 65.8%. In 11 dogs in which the lesion was clinically localized to the C6-T2 segment on the basis of a decreased withdrawal reflex in the forelimbs, MRI revealed an isolated C1-C5 disk lesion. In 1 dog, in which the lesion was suspected to be at the C1-C5 level, MRI revealed a C6-T2 lesion. Cranial cervical lesions were significantly associated with an incorrect neurologic diagnosis regarding site of the lesion. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that the withdrawal reflex in dogs with cervical disk herniation is not reliable for determining the affected site and that a decreased withdrawal reflex does not always indicate a lesion from C6 to T2.
Resumo:
This manuscript deals with the adaptation of quartz-microfabrics to changing physical deformation conditions, and discusses their preservation potential during subsequent retrograde deformation. Using microstructural analysis, a sequence of recrystallization processes in quartz, ranging from Grain-Boundary Migration Recrystallization (GBM) over Subgrain-Rotation Recrystallization (SGR) to Bulging Nucleation (BLG) is detected for the Simplon fault zone (SFZ) from the low strain rim towards the internal high strain part of the large-scale shear zone. Based on: (i) the retrograde cooling path; (ii) estimates of deformation temperatures; and (iii) spatial variation of dynamic recrystallization processes and different microstructural characteristics, continuous strain localization with decreasing temperature is inferred. In contrast to the recrystallization microstructures, crystallographic preferred orientations (CPO) have a longer memory. CPO patterns indicative of prism and rhomb glide systems in mylonitic quartz veins, overprinted at low temperatures (�400 �C), suggest inheritance of a high-temperature deformation. In this way, microstructural, textural and geochemical analyses provide information for several million years of the deformation history. The reasons for such incomplete resetting of the rock texture is that strain localization is caused by change in effective viscosity contrasts related to temporal large- and small-scale temperature changes during the evolution of such a long-lived shear zone. The spatially resolved, quantitative investigation of quartz microfabrics and associated recrystallization processes therefore provide great potential for an improved understanding of the geodynamics of large-scale shear zones.
Resumo:
OBJECTIVES To assess the diagnostic value of panoramic views (2D) of patients with impacted maxillary canines by a group of trained orthodontists and oral surgeons, and to quantify the subjective need and reasons for further three-dimensional (3D) imaging. MATERIALS AND METHODS The study comprises 60 patients with panoramic radiographs (2D) and cone beam computed tomography (CBCT) scans (3D), and a total of 72 impacted canines. Data from a standardized questionnaire were compared within (intragroup) and between (intergroup) a group of orthodontists and oral surgeons to assess possible correlations and differences. Furthermore, the questionnaire data were compared with the findings from the CBCT scans to estimate the correlation within and between the two specialties. Finally, the need and reasons for further 3D imaging was analysed for both groups. RESULTS When comparing questionnaire data with the analysis of the respective CBCT scans, orthodontists showed probability (Pr) values ranging from 0.443 to 0.943. Oral surgeons exhibited Pr values from 0.191 to 0.946. Statistically significant differences were found for the labiopalatal location of the impacted maxillary canine (P = 0.04), indicating a higher correlation in the orthodontist group. The most frequent reason mentioned for the further need of 3D analysis was the labiopalatal location of the impacted canines. Oral surgeons were more in favour of performing further 3D imaging (P = 0.04). CONCLUSIONS Orthodontists were more likely to diagnose the exact labiopalatal position of impacted maxillary canines when using panoramic views only. Generally, oral surgeons more often indicated the need for further 3D imaging.