220 resultados para Airway Inflammation
Resumo:
We studied the ability of 4 single-breath gas washout (SBW) tests to measure immediate effects of airway clearance in children with CF.
Resumo:
Abstract Background: Aerosol therapy in preterm infants is challenging, as a very small proportion of the drug deposits in the lungs. Aim: Our aim was to compare efficiency of standard devices with newer, more efficient aerosol delivery devices. Methods: Using salbutamol as a drug marker, we studied two prototypes of the investigational eFlow(®) nebulizer for babies (PARI Pharma GmbH), a jet nebulizer (Intersurgical(®) Cirrus(®)), and a pressurized metered dose inhaler (pMDI; GSK) with a detergent-coated holding chamber (AeroChamber(®) MV) in the premature infant nose throat-model (PrINT-model) of a 32-week preterm infant (1,750 g). A filter or an impactor was placed below the infant model's "trachea" to capture the drug dose or particle size, respectively, that would have been deposited in the lung. Results: Lung dose (percentage of nominal dose) was 1.5%, 6.8%, and 18.0-20.6% for the jet nebulizer, pMDI-holding chamber, and investigational eFlow nebulizers, respectively (p<0.001). Jet nebulizer residue was 69.4% and 10.7-13.9% for the investigational eFlow nebulizers (p<0.001). Adding an elbow extension between the eFlow and the model significantly lowered lung dose (p<0.001). A breathing pattern with lower tidal volume decreased deposition in the PrINT-model and device residue (p<0.05), but did not decrease lung dose. Conclusions: In a model for infant aerosol inhalation, we confirmed low lung dose using jet nebulizers and pMDI-holding chambers, whereas newer, more specialized vibrating membrane devices, designed specifically for use in preterm infants, deliver up to 20 times more drug to the infant's lung.
Resumo:
Video-laryngoscopes are marketed for intubation in difficult airway management. They provide a better view of the larynx and may facilitate tracheal intubation, but there is no adequately powered study comparing different types of video-laryngoscopes in a difficult airway scenario or in a simulated difficult airway situation.
Resumo:
Histamine, leukotriene C4, IL-4, and IL-13 are major mediators of allergy and asthma. They are all formed by basophils and are released in particularly large quantities after stimulation with IL-3. Here we show that supernatants of activated mast cells or IL-3 qualitatively change the makeup of granules of human basophils by inducing de novo synthesis of granzyme B (GzmB), without induction of other granule proteins expressed by cytotoxic lymphocytes (granzyme A, perforin). This bioactivity of IL-3 is not shared by other cytokines known to regulate the function of basophils or lymphocytes. The IL-3 effect is restricted to basophil granulocytes as no constitutive or inducible expression of GzmB is detected in eosinophils or neutrophils. GzmB is induced within 6 to 24 hours, sorted into the granule compartment, and released by exocytosis upon IgE-dependent and -independent activation. In vitro, there is a close parallelism between GzmB, IL-13, and leukotriene C4 production. In vivo, granzyme B, but not the lymphoid granule marker granzyme A, is released 18 hours after allergen challenge of asthmatic patients in strong correlation with interleukin-13. Our study demonstrates an unexpected plasticity of the granule composition of mature basophils and suggests a role of granzyme B as a novel mediator of allergic diseases.
Resumo:
A prothrombotic state may contribute to the elevated cardiovascular risk in patients with obstructive sleep apnea (OSA). We investigated the relationship between apnea severity and hemostasis factors and effect of continuous positive airway pressure (CPAP) treatment on hemostatic activity. We performed full overnight polysomnography in 44 OSA patients (mean age 47+/-10 years), yielding apnea-hypopnea index (AHI) and mean nighttime oxyhemoglobin saturation (SpO2) as indices of apnea severity. For treatment, subjects were double-blind randomized to 2 weeks of either therapeutic CPAP (n = 18), 3 l/min supplemental nocturnal oxygen (n = 16) or placebo-CPAP (<1 cm H2O) (n = 10). Levels of von Willebrand factor antigen (VWF:Ag), soluble tissue factor (sTF), D-dimer, and plasminogen activator inhibitor (PAI)-1 antigen were measured in plasma pre- and posttreatment. Before treatment, PAI-1 was significantly correlated with AHI (r = 0.47, p = 0.001) and mean nighttime SpO2 (r = -0.32, p = 0.035), but these OSA measures were not significantly related with VWF:Ag, sTF, and D-dimer. AHI was a significant predictor of PAI-1 (R2 = 0.219, standardized beta = 0.47, p = 0.001), independent of mean nighttime SpO2, body mass index (BMI), and age. A weak time-by-treatment interaction for PAI-1 was observed (p = 0.041), even after adjusting for age, BMI, pre-treatment AHI, and mean SpO2 (p = 0.046). Post hoc analyses suggested that only CPAP treatment was associated with a decrease in PAI-1 (p = 0.039); there were no changes in VWF:Ag, sTF, and D-dimer associated with treatment with placebo-CPAP or with nocturnal oxygen. Apnea severity may be associated with impairment in the fibrinolytic capacity. To the extent that our sample size was limited, the observation that CPAP treatment led to a decrease in PAI-1 in OSA must be regarded as tentative.
Resumo:
BACKGROUND: The study aimed at defining the excess morbidity or mortality caused by an additional airway malformation in children with congenital heart disease requiring surgery. METHODS: All patients requiring surgery for heart disease during an 8-year period ending in 2003 who had an associated upper airway malformation were retrospectively studied. All patients were seen in 2004 for a prospective follow-up examination. RESULTS: Eleven patients with upper airway anomalies were identified (tracheobronchial malacia in 6 patients, long-segment tracheal stenosis in 3, and bilateral vocal cord paralysis and tracheal hemangioma in 1 patient each). They accounted for 1.5% of the entire cardiac surgical load of 764 patients. In 5 infants, the airway anomaly was diagnosed before cardiac repair, in 6 patients thereafter. Diagnosis was made by bronchoscopy in all patients, by additional bronchography in 2. Failure of rapid postoperative extubation was the most common finding. Airway management was surgical in 2 and conservative in 8 patients, 1 newborn having been denied therapy because of the severity of airway hypoplasia. Compared with patients with isolated cardiac disease, those with additional airway anomalies had significantly longer duration of postoperative mechanical ventilation (median, 24 days versus 3), perioperative hospitalization (median, 72 days versus 11) and total number of days of hospitalization during the first year of life (median, 104 days versus 14). After a maximum follow-up of 8 years (median, 37 months) only 3 of 10 surviving patients remained symptomatic owing to the airway malformation. CONCLUSIONS: Upper airway anomalies accompanying heart disease in infancy resulted in a significant prolongation of perioperative intensive care and hospital stay, as well as duration of mechanical ventilation. Failure of early postoperative extubation was the leading symptom.
Resumo:
BACKGROUND: Fas (CD95/Apo-1) ligand (FasL)-induced apoptosis in Fas-bearing cells is critically involved in modulating immune reactions and tissue repair. Apoptosis has also been described after mechanical vascular injury such as percutaneous coronary intervention. However, the relevance of cell death in this context of vascular repair remains unknown. METHODS AND RESULTS: To determine whether FasL-induced apoptosis is causally related to neointimal lesion formation, we subjected FasL-deficient (generalized lymphoproliferative disorder [gld], C57BL/6J) and corresponding wild-type (WT) mice to carotid balloon distension injury, which induces marked endothelial denudation and medial cell death. FasL expression in WT mice was induced in injured vessels compared with untreated arteries (P<0.05; n=5). Conversely, absence of functional FasL in gld mice decreased medial and intimal apoptosis (terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling [TUNEL] index) at 1 hour and 7 days after balloon injury (P<0.05; n=6). In addition, peritoneal macrophages isolated from gld mice showed no apoptosis and enhanced migration (P<0.05; n=4). In parallel, we observed increased balloon-induced macrophage infiltrations (anti-CD68) in injured arteries of FasL-deficient animals (P<0.05; n=6). Together with enhanced proliferation (bromodeoxyuridine index; P<0.05), these events resulted in a further increase in medial and neointimal cells (P<0.01; n=8) with thickened neointima in gld mice (intima/media ratio, x3.8 of WT; P<0.01). CONCLUSIONS: Our data identify proapoptotic and antiinflammatory effects of endogenous FasL as important factors in the process of neointimal lesion formation after balloon injury. Moreover, they suggest that activation of FasL may decrease neointimal thickening after percutaneous coronary intervention.
Resumo:
We combined two techniques, radiolabeled aerosol inhalation delivery and induced sputum, to examine in vivo the time course of particle uptake by airway macrophages in 10 healthy volunteers. On three separate visits, induced sputum was obtained 40, 100, and 160 min after inhalation of radiolabeled sulfur colloid (SC) aerosol (Tc99 m-SC, 0.2 microm colloid size delivered in 6-microm droplets). On a fourth visit (control) with no SC inhalation, induced sputum was obtained and SC particles were incubated (37 degrees C) in vitro with sputum cells for 40, 100, and 160 min (matching the times associated with in vivo sampling). Total and differential cell counts were recorded for each sputum sample. Compared with 40 min (6 +/- 3%), uptake in vivo was significantly elevated at 100 (31 +/- 5%) and 160 min (27 +/- 4%); both were strongly associated with the number of airway macrophages (R = 0.8 and 0.7, respectively); and the number and proportion of macrophages at 40 min were significantly (P < 0.05) elevated compared with control (1,248 +/- 256 versus 555 +/- 114 cells/mg; 76 +/- 6% versus 60 +/- 5%). Uptake in vitro increased in a linear fashion over time and was maximal at 160 min (40 min, 12 +/- 2%; 100 min, 16 +/- 4%; 160 min, 24 +/- 6%). These data suggest that airway surface macrophages in healthy subjects rapidly engulf insoluble particles. Further, macrophage recruitment and phagocytosis-modifying agents are factors in vivo that likely affect particle uptake and its time course.
Resumo:
Transient inflammation is known to alter visceral sensory function and frequently precede the onset of symptoms in a subgroup of patients with irritable bowel syndrome (IBS). Duration and severity of the initial inflammatory stimulus appear to be risk factors for the manifestation of symptoms. Therefore, we aimed to characterize dose-dependent effects of trinitrobenzenesulfonic acid (TNBS)/ethanol on: (1) colonic mucosa, (2) cytokine release and (3) visceral sensory function in a rat model. Acute inflammation was induced in male Lewis rats by single administration of various doses of TNBS/ethanol (total of 0.8, 0.4 or 0.2 ml) in test animals or saline in controls. Assessment of visceromotor response (VMR) to colorectal distensions, histological evaluation of severity of inflammation, and measurement of pro-inflammatory cytokine levels (IL-2, IL-6) using enzyme-linked immunosorbent assay (ELISA) were performed 2h and 3, 14, 28, 31 and 42 days after induction. Increased serum IL-2 and IL-6 levels were evident prior to mucosal lesions 2h after induction of colitis and persist up to 14 days (p<0.05 vs. saline), although no histological signs of inflammation were detected at 14 days. In the acute phase, VMR was only significantly increased after 0.8 ml and 0.4 ml TNBS/ethanol (p<0.05 vs. saline). After 28 days, distension-evoked responses were persistently elevated (p<0.05 vs. saline) in 0.8 and 0.4 ml TNBS/ethanol-treated rats. In 0.2 ml TNBS/ethanol group, VMR was only enhanced after repeated visceral stimulation. Visceral hyperalgesia occurs after a transient colitis. However, even a mild acute but asymptomatic colitis can induce long-lasting visceral hyperalgesia in the presence of additional stimuli.
Resumo:
High-frequency respiratory impedance data measured noninvasively by the high-speed interrupter technique (HIT), particularly the first antiresonance frequency (f(ar,1)), is related to airway wall mechanics. The aim of this study was to evaluate the feasibility and repeatability of HIT in unsedated pre-term infants, and to compare values of f(ar,1) from 18 pre-term (post-conceptional age 32-37 weeks, weight 1,730-2,910 g) and 18 full-term infants (42-47 weeks, 3,920-5,340 g). Among the pre-term infants, there was good short-term repeatability of f(ar,1) within a single sleep epoch (mean (sd) coefficient of variance: 8 (1.7)%), but 95% limits of agreement for repeated measures of f(ar,1) after 3-8 h were relatively wide (-41 Hz; 37 Hz). f(ar,1) was significantly lower in pre-term infants (199 versus 257 Hz), indicating that wave propagation characteristics in pre-term airways are different from those of full-term infants. The present authors suggest that this is consistent with developmental differences in airway wall structure and compliance, including the influence of the surrounding tissue. Since flow limitation is determined by wave propagation velocity and airway cross-sectional area, it was hypothesised that the physical ability of the airways to carry large flows is fundamentally different in pre-term than in full-term infants.