232 resultados para transcatheter aortic valve replacement
Resumo:
IMPORTANCE Owing to a considerable shift toward bioprosthesis implantation rather than mechanical valves, it is expected that patients will increasingly present with degenerated bioprostheses in the next few years. Transcatheter aortic valve-in-valve implantation is a less invasive approach for patients with structural valve deterioration; however, a comprehensive evaluation of survival after the procedure has not yet been performed. OBJECTIVE To determine the survival of patients after transcatheter valve-in-valve implantation inside failed surgical bioprosthetic valves. DESIGN, SETTING, AND PARTICIPANTS Correlates for survival were evaluated using a multinational valve-in-valve registry that included 459 patients with degenerated bioprosthetic valves undergoing valve-in-valve implantation between 2007 and May 2013 in 55 centers (mean age, 77.6 [SD, 9.8] years; 56% men; median Society of Thoracic Surgeons mortality prediction score, 9.8% [interquartile range, 7.7%-16%]). Surgical valves were classified as small (≤21 mm; 29.7%), intermediate (>21 and <25 mm; 39.3%), and large (≥25 mm; 31%). Implanted devices included both balloon- and self-expandable valves. MAIN OUTCOMES AND MEASURES Survival, stroke, and New York Heart Association functional class. RESULTS Modes of bioprosthesis failure were stenosis (n = 181 [39.4%]), regurgitation (n = 139 [30.3%]), and combined (n = 139 [30.3%]). The stenosis group had a higher percentage of small valves (37% vs 20.9% and 26.6% in the regurgitation and combined groups, respectively; P = .005). Within 1 month following valve-in-valve implantation, 35 (7.6%) patients died, 8 (1.7%) had major stroke, and 313 (92.6%) of surviving patients had good functional status (New York Heart Association class I/II). The overall 1-year Kaplan-Meier survival rate was 83.2% (95% CI, 80.8%-84.7%; 62 death events; 228 survivors). Patients in the stenosis group had worse 1-year survival (76.6%; 95% CI, 68.9%-83.1%; 34 deaths; 86 survivors) in comparison with the regurgitation group (91.2%; 95% CI, 85.7%-96.7%; 10 deaths; 76 survivors) and the combined group (83.9%; 95% CI, 76.8%-91%; 18 deaths; 66 survivors) (P = .01). Similarly, patients with small valves had worse 1-year survival (74.8% [95% CI, 66.2%-83.4%]; 27 deaths; 57 survivors) vs with intermediate-sized valves (81.8%; 95% CI, 75.3%-88.3%; 26 deaths; 92 survivors) and with large valves (93.3%; 95% CI, 85.7%-96.7%; 7 deaths; 73 survivors) (P = .001). Factors associated with mortality within 1 year included having small surgical bioprosthesis (≤21 mm; hazard ratio, 2.04; 95% CI, 1.14-3.67; P = .02) and baseline stenosis (vs regurgitation; hazard ratio, 3.07; 95% CI, 1.33-7.08; P = .008). CONCLUSIONS AND RELEVANCE In this registry of patients who underwent transcatheter valve-in-valve implantation for degenerated bioprosthetic aortic valves, overall 1-year survival was 83.2%. Survival was lower among patients with small bioprostheses and those with predominant surgical valve stenosis.
Resumo:
BACKGROUND Up to 1 in 6 patients undergoing transcatheter aortic valve implantation (TAVI) present with low-ejection fraction, low-gradient (LEF-LG) severe aortic stenosis and concomitant relevant mitral regurgitation (MR) is present in 30% to 55% of these patients. The effect of MR on clinical outcomes of LEF-LG patients undergoing TAVI is unknown. METHODS AND RESULTS Of 606 consecutive patients undergoing TAVI, 113 (18.7%) patients with LEF-LG severe aortic stenosis (mean gradient ≤40 mm Hg, aortic valve area <1.0 cm(2), left ventricular ejection fraction <50%) were analyzed. LEF-LG patients were dichotomized into ≤mild MR (n=52) and ≥moderate MR (n=61). Primary end point was all-cause mortality at 1 year. No differences in mortality were observed at 30 days (P=0.76). At 1 year, LEF-LG patients with ≥moderate MR had an adjusted 3-fold higher rate of all-cause mortality (11.5% versus 38.1%; adjusted hazard ratio, 3.27 [95% confidence interval, 1.31-8.15]; P=0.011), as compared with LEF-LG patients with ≤mild MR. Mortality was mainly driven by cardiac death (adjusted hazard ratio, 4.62; P=0.005). As compared with LEF-LG patients with ≥moderate MR assigned to medical therapy, LEF-LG patients with ≥moderate MR undergoing TAVI had significantly lower all-cause mortality (hazard ratio, 0.38; 95% confidence interval, 0.019-0.75) at 1 year. CONCLUSIONS Moderate or severe MR is a strong independent predictor of late mortality in LEF-LG patients undergoing TAVI. However, LEF-LG patients assigned to medical therapy have a dismal prognosis independent of MR severity suggesting that TAVI should not be withheld from symptomatic patients with LEF-LG severe aortic stenosis even in the presence of moderate or severe MR.
Resumo:
Abstract Purpose Aortic stenosis (AS) is the most common valvular abnormality in the elderly population. For inoperable patients or those at high-risk for surgery, transcatheter aortic valve implantation (TAVI) has become an alternative therapeutic option. The aim of the “Comprehensive geriatric assessment for transcatheter aortic valve implantation” (CGA-TAVI) registry is to evaluate the effectiveness of TAVI from the perspective of the geriatrician and to identify patient characteristics and indicators related to complications and clinical benefits for patients with symptomatic severe calcified degenerative AS undergoing TAVI. Materials and methods The CGA-TAVI registry is an international, multi-center, prospective, observational registry across Europe with consecutive patient enrolment. The registry will enrol up to 200 patients with AS undergoing TAVI, starting August 2013. CGA-TAVI has two co-primary objectives: (1) Establish predictive value of Comprehensive geriatric assessment (CGA) for mortality and/or hospitalization in TAVI patients. (2) Demonstrate CGA changes within 3 months after TAVI. Secondary objectives are: (1) Establish predictive value of CGA in TAVI patients for all-cause hospitalization, TAVI-related hospitalization, and nursing home admission. (2) Develop a comprehensive score for the assessment of TAVI patient prognosis. Conclusions The data obtained from the CGA-TAVI registry will supplement previous results to document the potential value of the effectiveness of TAVI from the perspective of geriatricians and will allow the assessment of the predictive value of CGA for mortality and/or hospitalization in elderly TAVI patients. Keywords Aortic stenosis; Transcatheter aortic valve implantation (TAVI); Comprehensive geriatric assessment (CGA); Registry; Predictor
Resumo:
BACKGROUND Pulmonary hypertension (PH) frequently coexists with severe aortic stenosis, and PH severity has been shown to predict outcomes after transcatheter aortic valve implantation (TAVI). The effect of PH hemodynamic presentation on clinical outcomes after TAVI is unknown. METHODS AND RESULTS Of 606 consecutive patients undergoing TAVI, 433 (71.4%) patients with severe aortic stenosis and a preprocedural right heart catheterization were assessed. Patients were dichotomized according to whether PH was present (mean pulmonary artery pressure, ≥25 mm Hg; n=325) or not (n=108). Patients with PH were further dichotomized by left ventricular end-diastolic pressure into postcapillary (left ventricular end-diastolic pressure, >15 mm Hg; n=269) and precapillary groups (left ventricular end-diastolic pressure, ≤15 mm Hg; n=56). Finally, patients with postcapillary PH were divided into isolated (n=220) and combined (n=49) subgroups according to whether the diastolic pressure difference (diastolic pulmonary artery pressure-left ventricular end-diastolic pressure) was normal (<7 mm Hg) or elevated (≥7 mm Hg). Primary end point was mortality at 1 year. PH was present in 325 of 433 (75%) patients and was predominantly postcapillary (n=269/325; 82%). Compared with baseline, systolic pulmonary artery pressure immediately improved after TAVI in patients with postcapillary combined (57.8±14.1 versus 50.4±17.3 mm Hg; P=0.015) but not in those with precapillary (49.0±12.6 versus 51.6±14.3; P=0.36). When compared with no PH, a higher 1-year mortality rate was observed in both precapillary (hazard ratio, 2.30; 95% confidence interval, 1.02-5.22; P=0.046) and combined (hazard ratio, 3.15; 95% confidence interval, 1.43-6.93; P=0.004) but not isolated PH patients (P=0.11). After adjustment, combined PH remained a strong predictor of 1-year mortality after TAVI (hazard ratio, 3.28; P=0.005). CONCLUSIONS Invasive stratification of PH according to hemodynamic presentation predicts acute response to treatment and 1-year mortality after TAVI.
Resumo:
BACKGROUND New generation transcatheter heart valves (THV) may improve clinical outcomes of transcatheter aortic valve implantation. METHODS AND RESULTS In a nationwide, prospective, multicenter cohort study (Swiss Transcatheter Aortic Valve Implantation Registry, NCT01368250), outcomes of consecutive transfemoral transcatheter aortic valve implantation patients treated with the Sapien 3 THV (S3) versus the Sapien XT THV (XT) were investigated. An overall of 153 consecutive S3 patients were compared with 445 consecutive XT patients. Postprocedural mean transprosthetic gradient (6.5±3.0 versus 7.8±6.3 mm Hg, P=0.17) did not differ between S3 and XT patients, respectively. The rate of more than mild paravalvular regurgitation (1.3% versus 5.3%, P=0.04) and of vascular (5.3% versus 16.9%, P<0.01) complications were significantly lower in S3 patients. A higher rate of new permanent pacemaker implantations was observed in patients receiving the S3 valve (17.0% versus 11.0%, P=0.01). There were no significant differences for disabling stroke (S3 1.3% versus XT 3.1%, P=0.29) and all-cause mortality (S3 3.3% versus XT 4.5%, P=0.27). CONCLUSIONS The use of the new generation S3 balloon-expandable THV reduced the risk of more than mild paravalvular regurgitation and vascular complications but was associated with an increased permanent pacemaker rate compared with the XT. Transcatheter aortic valve implantation using the newest generation balloon-expandable THV is associated with a low risk of stroke and favorable clinical outcomes. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01368250.
Resumo:
BACKGROUND The Valve Academic Research Consortium (VARC) has proposed a standardized definition of bleeding in patients undergoing transcatheter aortic valve interventions (TAVI). The VARC bleeding definition has not been validated or compared to other established bleeding definitions so far. Thus, we aimed to investigate the impact of bleeding and compare the predictivity of VARC bleeding events with established bleeding definitions. METHODS AND RESULTS Between August 2007 and April 2012, 489 consecutive patients with severe aortic stenosis were included into the Bern-TAVI-Registry. Every bleeding complication was adjudicated according to the definitions of VARC, BARC, TIMI, and GUSTO. Periprocedural blood loss was added to the definition of VARC, providing a modified VARC definition. A total of 152 bleeding events were observed during the index hospitalization. Bleeding severity according to VARC was associated with a gradual increase in mortality, which was comparable to the BARC, TIMI, GUSTO, and the modified VARC classifications. The predictive precision of a multivariable model for mortality at 30 days was significantly improved by adding the most serious bleeding of VARC (area under the curve [AUC], 0.773; 95% confidence interval [CI], 0.706 to 0.839), BARC (AUC, 0.776; 95% CI, 0.694 to 0.857), TIMI (AUC, 0.768; 95% CI, 0.692 to 0.844), and GUSTO (AUC, 0.791; 95% CI, 0.714 to 0.869), with the modified VARC definition resulting in the best predictivity (AUC, 0.814; 95% CI, 0.759 to 0.870). CONCLUSIONS The VARC bleeding definition offers a severity stratification that is associated with a gradual increase in mortality and prognostic information comparable to established bleeding definitions. Adding the information of periprocedural blood loss to VARC may increase the sensitivity and the predictive power of this classification.
Resumo:
OBJECTIVES This study compared clinical outcomes and revascularization strategies among patients presenting with low ejection fraction, low-gradient (LEF-LG) severe aortic stenosis (AS) according to the assigned treatment modality. BACKGROUND The optimal treatment modality for patients with LEF-LG severe AS and concomitant coronary artery disease (CAD) requiring revascularization is unknown. METHODS Of 1,551 patients, 204 with LEF-LG severe AS (aortic valve area <1.0 cm(2), ejection fraction <50%, and mean gradient <40 mm Hg) were allocated to medical therapy (MT) (n = 44), surgical aortic valve replacement (SAVR) (n = 52), or transcatheter aortic valve replacement (TAVR) (n = 108). CAD complexity was assessed using the SYNTAX score (SS) in 187 of 204 patients (92%). The primary endpoint was mortality at 1 year. RESULTS LEF-LG severe AS patients undergoing SAVR were more likely to undergo complete revascularization (17 of 52, 35%) compared with TAVR (8 of 108, 8%) and MT (0 of 44, 0%) patients (p < 0.001). Compared with MT, both SAVR (adjusted hazard ratio [adj HR]: 0.16; 95% confidence interval [CI]: 0.07 to 0.38; p < 0.001) and TAVR (adj HR: 0.30; 95% CI: 0.18 to 0.52; p < 0.001) improved survival at 1 year. In TAVR and SAVR patients, CAD severity was associated with higher rates of cardiovascular death (no CAD: 12.2% vs. low SS [0 to 22], 15.3% vs. high SS [>22], 31.5%; p = 0.037) at 1 year. Compared with no CAD/complete revascularization, TAVR and SAVR patients undergoing incomplete revascularization had significantly higher 1-year cardiovascular death rates (adj HR: 2.80; 95% CI: 1.07 to 7.36; p = 0.037). CONCLUSIONS Among LEF-LG severe AS patients, SAVR and TAVR improved survival compared with MT. CAD severity was associated with worse outcomes and incomplete revascularization predicted 1-year cardiovascular mortality among TAVR and SAVR patients.
Resumo:
OBJECTIVE In patients with aortic stenosis, left ventricular systolic torsion (pT) is increased to overcome excessive afterload. This study assessed left ventricular torsion before and immediately after surgical valve replacement and tested the instant effect of fluid loading. DESIGN Prospective, clinical single-center study. SETTING Intensive care unit of a university hospital. PARTICIPANTS 12 patients undergoing elective aortic valve replacement for aortic stenosis. INTERVENTIONS Echocardiography was performed on the day before surgery, within 18 hours after surgery including a fluid challenge, and after 2.5 years. MEASUREMENTS AND MAIN RESULTS pT decreased early postoperatively by 21.2% (23.4° ± 5.6° to 18.4° ± 6.9°; p = 0.012) and reached preoperative values at 2.5 years follow-up (24 ± 7). Peak diastolic untwisting velocity occurred later early postoperatively (13% ± 8% to 21% ± 9.4%; p = 0.019) and returned toward preoperative values at follow-up (10.2 ± 4.7°). The fluid challenge increased central venous pressure (8 ± 4 mmHg to 11 ± 4 mmHg; p = 0.003) and reduced peak systolic torsion velocity (138.7 ± 37.6/s to 121.3 ± 32/s; p = 0.032). pT decreased in 3 and increased in 8 patients after fluid loading. Patients whose pT increased had higher early mitral inflow velocity postoperatively (p = 0.04) than those with decreasing pT. Patients with reduced pT after fluid loading received more fluids (p = 0.04) and had a higher positive fluid balance during the intensive care unit stay (p = 0.03). Torsion after fluid loading correlated with total fluid input (p = 0.001) and cumulative fluid balance (p = 0.002). CONCLUSIONS pT decreased early after aortic valve replacement but remained elevated despite elimination of aortic stenosis. After 2.5 years, torsion had returned to preoperative levels.
Resumo:
BACKGROUND Sutureless aortic valve replacement (SU-AVR) is an innovative approach which shortens cardiopulmonary bypass and cross-clamp durations and may facilitate minimally invasive approach. Evidence outlining its safety, efficacy, hemodynamic profile and potential complications is replete with small-volume observational studies and few comparative publications. METHODS Minimally invasive aortic valve surgery and high-volume SU-AVR replacement centers were contacted for recruitment into a global collaborative coalition dedicated to sutureless valve research. A Research Steering Committee was formulated to direct research and support the mission of providing registry evidence warranted for SU-AVR. RESULTS The International Valvular Surgery Study Group (IVSSG) was formed under the auspices of the Research Steering Committee, comprised of 36 expert valvular surgeons from 27 major centers across the globe. IVSSG Sutureless Projects currently proceeding include the Retrospective and Prospective Phases of the SU-AVR International Registry (SU-AVR-IR). CONCLUSIONS The global pooling of data by the IVSSG Sutureless Projects will provide required robust clinical evidence on the safety, efficacy and hemodynamic outcomes of SU-AVR.
Resumo:
BACKGROUND Sutureless aortic valve replacement (SU-AVR) has emerged as an innovative alternative for treatment of aortic stenosis. By avoiding the placement of sutures, this approach aims to reduce cross-clamp and cardiopulmonary bypass (CPB) duration and thereby improve surgical outcomes and facilitate a minimally invasive approach suitable for higher risk patients. The present systematic review and meta-analysis aims to assess the safety and efficacy of SU-AVR approach in the current literature. METHODS Electronic searches were performed using six databases from their inception to January 2014. Relevant studies utilizing sutureless valves for aortic valve implantation were identified. Data were extracted and analyzed according to predefined clinical endpoints. RESULTS Twelve studies were identified for inclusion of qualitative and quantitative analyses, all of which were observational reports. The minimally invasive approach was used in 40.4% of included patients, while 22.8% underwent concomitant coronary bypass surgery. Pooled cross-clamp and CPB duration for isolated AVR was 56.7 and 46.5 minutes, respectively. Pooled 30-day and 1-year mortality rates were 2.1% and 4.9%, respectively, while the incidences of strokes (1.5%), valve degenerations (0.4%) and paravalvular leaks (PVL) (3.0%) were acceptable. CONCLUSIONS The evaluation of current observational evidence suggests that sutureless aortic valve implantation is a safe procedure associated with shorter cross-clamp and CPB duration, and comparable complication rates to the conventional approach in the short-term.