103 resultados para repeated suicide attempts
Resumo:
Theoretischer Hintergrund: Ein erfolgter Suizidversuch ist der grösste Risikofaktor für einen späteren Suizid. Der aktuelle Stand der Forschung zeigt, dass es bislang kaum Therapieansätze gibt, die dieses Risiko langfristig zu reduzieren vermögen. Methoden: ASSIP ist eine spezifische Kurztherapie für Patienten nach einem Suizidversuch und beruht auf einem handlungstheoretischen Konzept von Suizid. Es vereint Elemente der Bindungstheorie mit kognitiv-verhaltenstherapeutischen Strategien. Ergebnisse: Im Rahmen einer randomisierten Effektivitätsstudie (N=120) konnte gezeigt werden, dass die Interventionsgruppe im Vergleich zu ihrer Kontrollgruppe über zwei Jahre hinweg signifikant weniger wiederholte Suizidersuch aufwies. Weitere wichtige Ergebnisse werden präsentiert. Diskussion: Durch den Aufbau einer losen aber anhaltenden Therapiebeziehung, wie auch von Strategien im Umgang mit suizidalen Krisen, finden weniger Suizidhandlungen statt und ein besserer Umgang mit suizidalen Krisen wird möglich.
Resumo:
Objective: Limited research exists on internal risk processes in suicide attempters and factors that distinguish them from non-suicidal, depressive individuals. In this qualitative study, we investigated Plans, motives, and underlying self-regulatory processes of the two groups and conducted a comparative analysis. Methods: We analyzed narrative interviews of 17 suicide attempters and intake interviews of 17 non-suicidal, depressive patients using Plan Analysis. Then, we developed a prototypical Plan structure for both groups. Results: Suicidal behavior serves various Plans only found in suicide attempters. Plans of this group are especially related to social perfectionism and withdrawal in order to protect their self-esteem. Depressive patients employ several interpersonal control and coping strategies, which might help prevent suicidal behavior. Conclusion: The prototypical Plan structure of suicide attempters may be a valuable tool for clinicians to detect critical Plans and motives in their interaction with patients, which are related to suicide risk.
Resumo:
BackgroundIn Switzerland assisted suicide is legal if no self-interest is involved.AimsTo compare the strength and direction of associations with sociodemographic factors between assisted and unassisted suicides.MethodWe calculated rates and used Cox and logistic regression models in a longitudinal study of the Swiss population.ResultsAnalyses were based on 5 004 403 people, 1301 assisted and 5708 unassisted suicides from 2003 to 2008. The rate of unassisted suicides was higher in men than in women, rates of assisted suicides were similar in men and women. Higher education was positively associated with assisted suicide, but negatively with unassisted. Living alone, having no children and no religious affiliation were associated with higher rates of both.ConclusionsSome situations that indicate greater vulnerability such as living alone were associated with both assisted and unassisted suicide. Among the terminally ill, women were more likely to choose assisted suicide, whereas men died more often by unassisted suicide.
Resumo:
BACKGROUND Current reporting guidelines do not call for standardised declaration of follow-up completeness, although study validity depends on the representativeness of measured outcomes. The Follow-Up Index (FUI) describes follow-up completeness at a given study end date as ratio between the investigated and the potential follow-up period. The association between FUI and the accuracy of survival-estimates was investigated. METHODS FUI and Kaplan-Meier estimates were calculated twice for 1207 consecutive patients undergoing aortic repair during an 11-year period: in a scenario A the population's clinical routine follow-up data (available from a prospective registry) was analysed conventionally. For the control scenario B, an independent survey was completed at the predefined study end. To determine the relation between FUI and the accuracy of study findings, discrepancies between scenarios regarding FUI, follow-up duration and cumulative survival-estimates were evaluated using multivariate analyses. RESULTS Scenario A noted 89 deaths (7.4%) during a mean considered follow-up of 30±28months. Scenario B, although analysing the same study period, detected 304 deaths (25.2%, P<0.001) as it scrutinized the complete follow-up period (49±32months). FUI (0.57±0.35 versus 1.00±0, P<0.001) and cumulative survival estimates (78.7% versus 50.7%, P<0.001) differed significantly between scenarios, suggesting that incomplete follow-up information led to underestimation of mortality. Degree of follow-up completeness (i.e. FUI-quartiles and FUI-intervals) correlated directly with accuracy of study findings: underestimation of long-term mortality increased almost linearly by 30% with every 0.1 drop in FUI (adjusted HR 1.30; 95%-CI 1.24;1.36, P<0.001). CONCLUSION Follow-up completeness is a pre-requisite for reliable outcome assessment and should be declared systematically. FUI represents a simple measure suited as reporting standard. Evidence lacking such information must be challenged as potentially flawed by selection bias.
Resumo:
Liability of newness, the tendency of new ventures to die early after market entry, results from lacking legitimacy in their new cultural context and according failure to acquire resources. Based on a longitudinal case study on repeated resource acquisition attempts of a new venture, we found that overcoming liability of newness depended on the socialization of the new venture to the normative environment on which it depended on for resources. Over time and across repeated resource acquisition attempts, socialization - the process of learning the use of legitimate symbols and their culturally contingent meanings - enabled the new venture to become the skillful cultural operator on which legitimation and resource acquisition was contingent. From our data, 'Accumulating a repertoire of legitimate symbols' and 'Assimilating the evaluations of resource-holders' emerged as the two primary mechanisms for new venture socialization. The study's contributions to related literature and its broader theoretical implications are discussed
Resumo:
The ATLS program by the American college of surgeons is probably the most important globally active training organization dedicated to improve trauma management. Detection of acute haemorrhagic shock belongs to the key issues in clinical practice and thus also in medical teaching. (In this issue of the journal William Schulz and Ian McConachrie critically review the ATLS shock classification Table 1), which has been criticized after several attempts of validation have failed [1]. The main problem is that distinct ranges of heart rate are related to ranges of uncompensated blood loss and that the heart rate decrease observed in severe haemorrhagic shock is ignored [2]. Table 1. Estimated blood loos based on patient's initial presentation (ATLS Students Course Manual, 9th Edition, American College of Surgeons 2012). Class I Class II Class III Class IV Blood loss ml Up to 750 750–1500 1500–2000 >2000 Blood loss (% blood volume) Up to 15% 15–30% 30–40% >40% Pulse rate (BPM) <100 100–120 120–140 >140 Systolic blood pressure Normal Normal Decreased Decreased Pulse pressure Normal or ↑ Decreased Decreased Decreased Respiratory rate 14–20 20–30 30–40 >35 Urine output (ml/h) >30 20–30 5–15 negligible CNS/mental status Slightly anxious Mildly anxious Anxious, confused Confused, lethargic Initial fluid replacement Crystalloid Crystalloid Crystalloid and blood Crystalloid and blood Table options In a retrospective evaluation of the Trauma Audit and Research Network (TARN) database blood loss was estimated according to the injuries in nearly 165,000 adult trauma patients and each patient was allocated to one of the four ATLS shock classes [3]. Although heart rate increased and systolic blood pressure decreased from class I to class IV, respiratory rate and GCS were similar. The median heart rate in class IV patients was substantially lower than the value of 140 min−1 postulated by ATLS. Moreover deterioration of the different parameters does not necessarily go parallel as suggested in the ATLS shock classification [4] and [5]. In all these studies injury severity score (ISS) and mortality increased with in increasing shock class [3] and with increasing heart rate and decreasing blood pressure [4] and [5]. This supports the general concept that the higher heart rate and the lower blood pressure, the sicker is the patient. A prospective study attempted to validate a shock classification derived from the ATLS shock classes [6]. The authors used a combination of heart rate, blood pressure, clinically estimated blood loss and response to fluid resuscitation to classify trauma patients (Table 2) [6]. In their initial assessment of 715 predominantly blunt trauma patients 78% were classified as normal (Class 0), 14% as Class I, 6% as Class II and only 1% as Class III and Class IV respectively. This corresponds to the results from the previous retrospective studies [4] and [5]. The main endpoint used in the prospective study was therefore presence or absence of significant haemorrhage, defined as chest tube drainage >500 ml, evidence of >500 ml of blood loss in peritoneum, retroperitoneum or pelvic cavity on CT scan or requirement of any blood transfusion >2000 ml of crystalloid. Because of the low prevalence of class II or higher grades statistical evaluation was limited to a comparison between Class 0 and Class I–IV combined. As in the retrospective studies, Lawton did not find a statistical difference of heart rate and blood pressure among the five groups either, although there was a tendency to a higher heart rate in Class II patients. Apparently classification during primary survey did not rely on vital signs but considered the rather soft criterion of “clinical estimation of blood loss” and requirement of fluid substitution. This suggests that allocation of an individual patient to a shock classification was probably more an intuitive decision than an objective calculation the shock classification. Nevertheless it was a significant predictor of ISS [6]. Table 2. Shock grade categories in prospective validation study (Lawton, 2014) [6]. Normal No haemorrhage Class I Mild Class II Moderate Class III Severe Class IV Moribund Vitals Normal Normal HR > 100 with SBP >90 mmHg SBP < 90 mmHg SBP < 90 mmHg or imminent arrest Response to fluid bolus (1000 ml) NA Yes, no further fluid required Yes, no further fluid required Requires repeated fluid boluses Declining SBP despite fluid boluses Estimated blood loss (ml) None Up to 750 750–1500 1500–2000 >2000 Table options What does this mean for clinical practice and medical teaching? All these studies illustrate the difficulty to validate a useful and accepted physiologic general concept of the response of the organism to fluid loss: Decrease of cardiac output, increase of heart rate, decrease of pulse pressure occurring first and hypotension and bradycardia occurring only later. Increasing heart rate, increasing diastolic blood pressure or decreasing systolic blood pressure should make any clinician consider hypovolaemia first, because it is treatable and deterioration of the patient is preventable. This is true for the patient on the ward, the sedated patient in the intensive care unit or the anesthetized patients in the OR. We will therefore continue to teach this typical pattern but will continue to mention the exceptions and pitfalls on a second stage. The shock classification of ATLS is primarily used to illustrate the typical pattern of acute haemorrhagic shock (tachycardia and hypotension) as opposed to the Cushing reflex (bradycardia and hypertension) in severe head injury and intracranial hypertension or to the neurogenic shock in acute tetraplegia or high paraplegia (relative bradycardia and hypotension). Schulz and McConachrie nicely summarize the various confounders and exceptions from the general pattern and explain why in clinical reality patients often do not present with the “typical” pictures of our textbooks [1]. ATLS refers to the pitfalls in the signs of acute haemorrhage as well: Advanced age, athletes, pregnancy, medications and pace makers and explicitly state that individual subjects may not follow the general pattern. Obviously the ATLS shock classification which is the basis for a number of questions in the written test of the ATLS students course and which has been used for decades probably needs modification and cannot be literally applied in clinical practice. The European Trauma Course, another important Trauma training program uses the same parameters to estimate blood loss together with clinical exam and laboratory findings (e.g. base deficit and lactate) but does not use a shock classification related to absolute values. In conclusion the typical physiologic response to haemorrhage as illustrated by the ATLS shock classes remains an important issue in clinical practice and in teaching. The estimation of the severity haemorrhage in the initial assessment trauma patients is (and was never) solely based on vital signs only but includes the pattern of injuries, the requirement of fluid substitution and potential confounders. Vital signs are not obsolete especially in the course of treatment but must be interpreted in view of the clinical context. Conflict of interest None declared. Member of Swiss national ATLS core faculty.
Resumo:
BACKGROUND Ventricular tachycardia (VT) refractory to antiarrhythmic drugs and standard percutaneous catheter ablation techniques portends a poor prognosis. We characterized the reasons for ablation failure and describe alternative interventional procedures in this high-risk group. METHODS AND RESULTS Sixty-seven patients with VT refractory to 4±2 antiarrhythmic drugs and 2±1 previous endocardial/epicardial catheter ablation attempts underwent transcoronary ethanol ablation, surgical epicardial window (Epi-window), or surgical cryoablation (OR-Cryo; age, 62±11 years; VT storm in 52%). Failure of endo/epicardial ablation attempts was because of VT of intramural origin (35 patients), nonendocardial origin with prohibitive epicardial access because of pericardial adhesions (16), and anatomic barriers to ablation (8). In 8 patients, VT was of nonendocardial origin with a coexisting condition also requiring cardiac surgery. Transcoronary ethanol ablation alone was attempted in 37 patients, OR-Cryo alone in 21 patients, and a combination of transcoronary ethanol ablation and OR-Cryo (5 patients), or transcoronary ethanol ablation and Epi-window (4 patients), in the remainder. Overall, alternative interventional procedures abolished ≥1 inducible VT and terminated storm in 69% and 74% of patients, respectively, although 25% of patients had at least 1 complication. By 6 months post procedures, there was a significant reduction in defibrillator shocks (from a median of 8 per month to 1; P<0.001) and antiarrhythmic drug requirement although 55% of patients had at least 1 VT recurrence, and mortality was 17%. CONCLUSIONS A collaborative strategy of alternative interventional procedures offers the possibility of achieving arrhythmia control in high-risk patients with VT that is otherwise uncontrollable with antiarrhythmic drugs and standard percutaneous catheter ablation techniques.