371 resultados para nonelective percutaneous
Resumo:
Our purpose was to perform a systematic review and meta-analysis of randomized trials comparing percutaneous coronary intervention (PCI) of the infarct-related artery (IRA) with medical therapy in patients randomized >12 h after acute myocardial infarction (AMI).
Resumo:
AIMS: No-reflow after a primary percutaneous coronary intervention (PCI) is associated with a high incidence of left ventricular (LV) failure and a poor prognosis. Endothelin-1 (ET-1) is a potent endothelium-derived vasoconstrictor peptide and an important modulator of neutrophil function. Elevated systemic ET-1 levels have recently been reported to predict a poor prognosis in patients with acute myocardial infarction (AMI) treated by primary PCI. We aimed to investigate the relationship between systemic ET-1 plasma levels and no-reflow in a group of AMI patients treated by primary PCI. METHODS AND RESULTS: A group of 51 patients (age 59+/-9.9 years, 44 males) with a first AMI, undergoing successful primary or rescue PCI, were included in the study. Angiographic no-reflow was defined as coronary TIMI flow grade < or =2 or TIMI flow 3 with a final myocardial blush grade < or =2. Blood samples were obtained from all patients on admission for ET-1 levels measurement. No reflow was observed in 31 patients (61%). Variables associated with no-reflow at univariate analysis included culprit lesion of the left anterior coronary descending artery (LAD) (67 vs. 29%, P=0.006) and ET-1 plasma levels (3.95+/-0.7 vs. 3.3+/-0.8 pg/mL, P=0.004). At multivariable logistic regression analysis, ET-1 was the only significant predictor of no-reflow (P=0.03) together with LAD as the culprit vessel (P=0.04). CONCLUSION: ET-1 plasma levels predict angiographic no-reflow after successful primary or rescue PCI. These findings suggest that ET-1 antagonists might be beneficial in the management of no-reflow.
Resumo:
OBJECTIVE: The objective of this study was to assess predictors of residual shunts after percutaneous patent foramen ovale (PFO) closure with Amplatzer PFO occluder (AGA Medical Corporation, Golden Valley, MN, USA). METHODS: All percutaneous PFO closures, using Amplatzer PFO occluder performed at a tertiary center between May 2002 and August 2006, were reviewed. Follow-up, including saline contrast transesophageal echocardiography, was performed in all patients 6 months after the intervention. PATIENTS: A total of 135 procedures were performed. Mean age of the patients was 51 years. The indication for PFO closure was an ischemic cerebrovascular event in 92%, paradoxical systemic embolism in 4%, and a diving accident in 4%. Recurrent events prior to PFO closure were noted in 34%. A concomitant atrial septal aneurysm was present in 61%. RESULTS: At 6 months follow-up, a residual shunt was detected in 26 patients (19%). Residual shunts were more common in patients with an atrial septal aneurysm (27 vs. 8%, P= .01) and in patients treated with a 35-mm compared with a 25-mm device (39 vs. 15%, P= .01). A concomitant atrial septal aneurysm remained independently associated with residual shunts when controlled for body mass index, gender, age, atrial dimensions, and presence of a Chiari network (odds ratio 4.1, 95% confidence intervals 1.1-15.0). CONCLUSION: The presence of atrial septal aneurysms in patients undergoing percutaneous PFO closure with an Amplatzer PFO occluder significantly increases the rate of residual shunts at 6 months follow-up, even if 35-mm devices are used.
Resumo:
OBJECTIVES: We sought to assess the safety and clinical efficacy of patent foramen ovale (PFO) closure under fluoroscopic guidance only, without intraprocedural echocardiography. BACKGROUND: Percutaneous PFO closure has been shown to be safe and feasible using several devices. It is generally performed using simultaneously fluoroscopic and transesophageal or intracardiac echocardiographic guidance. Transesophageal echocardiography requires sedation or general anesthesia and intubation to avoid aspiration. Intracardiac echocardiography is costly and has inherent risks. Both lengthen the procedure. The Amplatzer PFO Occluder (AGA Medical Corporation, Golden Valley, Minnesota) can be safely implanted without echocardiographic guidance. METHODS: A total of 620 patients (51 +/- 12 years; 66% male) underwent PFO closure using the Amplatzer PFO Occluder for secondary prevention of presumed paradoxical embolism. Based on size and mobility of the PFO and the interatrial septum, an 18-mm device was used in 50 patients, a 25-mm device in 492, and a 35-mm device in 78. RESULTS: All procedures were successful, with 5 procedural complications (0.8%): 4 arteriovenous fistulae requiring elective surgical correction, and 1 transient ischemic attack. Contrast transesophageal echocardiography at 6 months showed complete closure in 91% of patients, whereas a minimal, moderate, or large residual shunt persisted in 6%, 2%, and 1%, respectively. During a mean follow-up period of 3.0 +/- 1.9 years (median: 2.6 years; total patient-years: 1,871), 5 ischemic strokes, 8 transient ischemic attacks, and no peripheral emboli were reported. Freedom from recurrent ischemic stroke, transient ischemic attack, or peripheral embolism was 99% at 1 year, 99% at 2 years, and 97% at 5 years. CONCLUSIONS: The Amplatzer PFO Occluder affords excellent safety and long-term clinical efficacy of percutaneous PFO closure without intraprocedural echocardiography.
Resumo:
A 83-year-old woman underwent percutaneous closure of postinfarction ventricular septal defect following anteroseptal myocardial infarction and percutaneous coronary intervention with stent implantation of the left anterior descending coronary artery. Postinfarction percutaneous ventricular septal defect closure was initially complicated by an iatrogenic left ventricular free-wall perforation. Both defects were closed using two Amplatzer muscular VSD occluders during the same session.
Resumo:
BACKGROUND: The association between aortic valve disease and coronary atherosclerosis is common. In the recent era of percutaneous aortic valve replacement (PAVR), there is little experience with coronary artery intervention after valve implantation. CASE REPORT: To our knowledge, this is the first case of successful percutaneous coronary intervention after implantation of a CoreValve percutaneous aortic valve. We report a case of a 79-year-old female patient who underwent successful coronary artery intervention few months after a CoreValve's percutaneous implantation for severe aortic valve stenosis. Verifying the position of the used wires (crossing from inside the self expanding frame) is of utmost importance before proceeding to coronary intervention. In this case, crossing the aortic valve, coronary angiography, and multivessel stenting were successfully performed. CONCLUSION: Percutaneous coronary intervention in patients with previous CoreValve is feasible and safe.
Resumo:
BACKGROUND: Patients with refractory angina pectoris in end-stage coronary artery disease represent a severe condition with a higher reduction of life-expectancy and quality of life as compared to patients with stable coronary artery disease. It was the purpose of this study to invasively re-evaluate highly symptomatic patients with formerly diagnosed refractory angina pectoris in end-stage coronary artery disease for feasible options of myocardial revascularization. METHODS: Thirty-four patients formerly characterized as having end stage coronary artery disease with refractory angina pectoris were retrospectively followed for coronary interventions. RESULTS: Of those 34 patients 21 (61.8%) were eventually revascularized with percutaneous interventional revascularization (PCI). Due to complex coronary morphology (angulation, chronic total occlusion) PCI demanded an above-average amount of time (66 +/- 42 minutes, range 25-206 minutes) and materials (contrast media 247 +/- 209 ml, range 50-750 ml; PCI guiding wires 2.0 +/- 1.4, range 1-6 wires). Of PCI patients 7 (33.3%) showed a new lesion as a sign of progression of atherosclerosis. Clinical success rate with a reduction to angina class II or lower was 71.4% at 30 days. Surgery was performed in a total of8 (23.5%) patients with a clinical success rate of 62.5%. Based on an intention-to-treat 2 patients of originally 8 (25%) demonstrated clinical success. Mortality during follow-up (1-18 months) was 4.8% in patients who underwent PCI, 25% in patients treated surgically and 25% in those only treated medically. CONCLUSION: The majority of patients with end-stage coronary artery disease can be treated effectively with conventional invasive treatment modalities. Therefore even though it is challenging and demanding PCI should be considered as a first choice before experimental interventions are considered.
Resumo:
Morbidity and mortality related to coronary artery disease (CAD) remain a great challenge in patients with diabetes mellitus. Revascularization of CAD is an important therapeutic intervention owing to its impact on both symptoms and prognosis. The optimal revascularization strategy continues to evolve due to the advent of new technologies and improved peri-procedural outcome with both percutaneous coronary interventions and coronary artery bypass grafting. Although clinical outcome following coronary artery bypass is worse in diabetic as opposed to non-diabetic patients, surgical revascularization tends to be associated with better outcome in stable patients with multivessel disease and reduced left ventricular function. The advent of drug-eluting stents has challenged the supremacy of coronary artery bypass grafting and has become a valuable alternative to surgery. The safety and efficacy of drug-eluting stents in the treatment of patients with diabetes and multivessel disease is currently under investigation in several ongoing randomized controlled trials. Percutaneous coronary intervention is the therapy of choice in patients with acute coronary syndromes, particularly ST-elevation myocardial infarction. The focus of this review is to present the current evidence, define the role of percutaneous and surgical revascularization in the treatment of diabetic patients with CAD, and propose a tailored approach for clinical decision-making.
Resumo:
Left ventricular assist devices were developed to support the function of a failing left ventricle. Owing to recent technological improvements, ventricular assist devices can be placed by percutaneous implantation techniques, which offer the advantage of fast implantation in the setting of acute left ventricular failure. This article reviews the growing evidence supporting the clinical use of left ventricular assist devices. Specifically, we discuss the use of left ventricular assist devices in patients with cardiogenic shock, in patients with acute ST-elevation myocardial infarction without shock, and during high-risk percutaneous coronary interventions.
Resumo:
BACKGROUND AND AIM OF THE STUDY: Recent studies have suggested placental growth factor (PlGF) and vascular endothelial growth factor (VEGF) as promising new biomarkers for risk stratification in acute coronary syndromes (ACS). However, little is known about the influence of percutaneous coronary intervention (PCI) on circulating PlGF and VEGF levels. METHODS: Thirty-five patients with ACS, 27 patients with stable coronary artery disease (sCAD), and nine healthy controls were enrolled in the study. Although all patients with ACS and 14 patients with stable angina pectoris underwent PCI, 13 patients with coronary artery disease required no revascularization (sCAD). PlGF and VEGF plasma concentrations were measured by immunoassay during and at the end of PCI and coronary angiography. RESULTS: Plasma PlGF levels were comparable in patients with ACS and sCAD on admission. Although coronary angiography or heparin alone did not alter PlGF and VEGF levels, immediately after PCI a dramatic increase was seen in circulating PlGF and a decrease in VEGF, which was independent of the clinical presentation of the patients, heparin administration, or the angiographic procedure itself, but was associated with the extent of coronary artery disease and the amount of the injected contrast media. In-vitro experiments revealed that radiocontrast agents induced the release of PlGF from endothelial cells without altering PlGF mRNA expression. CONCLUSION: Patients undergoing PCI exhibit an increase in circulating PlGF, probably caused by posttranslational modifications of radiocontrast agents in endothelial cells. Therefore, analysis of plasma PlGF and VEGF levels may consider the timing of blood sampling with respect to PCI and contrast media exposure.
Resumo:
Patients with upper aerodigestive tract (UAT) cancers often suffer from malnutrition and compromised functional ability. We compared clinical outcome with percutaneous endoscopic gastrostomy (PEG) tube feeding begun at two different time points. The records of 151 patients with UAT carcinomas were reviewed retrospectively. We included patients undergoing radical radiochemotherapy and PEG tube feeding. Subjects were evaluated before PEG insertion and at the end of the treatment. Patients (n=15, 100%) were divided into two groups according to the presence (group A) or absence (group B) of mucositis. Group A (51.7% of patients) received early PEG: before or within 2 wk of radiotherapy. Group B (48.3%) received delayed PEG: between 2 wk and 3 mo after the start of radiotherapy. Mean weight loss was 1.03 kg in group A vs. 4.0 kg in group B, P=0.004. Treatment interruptions were significantly (P=0.01) more common in group B. Early PEG placement at the beginning of radiochemotherapy in patients with UAT tumors maintains the patient's nutritional state and reduces treatment interruptions.