104 resultados para massive vectorial boson
Resumo:
Measurements of differential production cross-sections of a Z boson in association with b-jets in pp collisions at √s = 7TeV are reported. The data analysed correspond to an integrated luminosity of 4.6 fb−1 recorded with the ATLAS detector at the Large Hadron Collider. Particle-level cross-sections are determined for events with a Z boson decaying into an electron or muon pair, and containing b-jets. For events with at least one b-jet, the cross-section is presented as a function of the Z boson transverse momentum and rapidity, together with the inclusive b-jet cross-section as a function of b-jet transverse momentum, rapidity and angular separations between the b-jet and the Z boson. For events with at least two b-jets, the cross-section is determined as a function of the invariant mass and angular separation of the two highest transverse momentum b-jets, and as a function of the Z boson transverse momentum and rapidity. Results are compared to leading-order and next-to-leading-order perturbative QCD calculations.
Resumo:
An improved measurement of the mass of the Higgs boson is derived from a combined fit to the reconstructed invariant mass spectra of the decay channels H→γγ and H→ZZ ∗ →4ℓ . The analysis uses the pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at center-of-mass energies of 7 TeV and 8 TeV, corresponding to an integrated luminosity of 25 fb −1 . The measured value of the Higgs boson mass is m H =125.36±0.37(stat)±0.18(syst) GeV . This result is based on improved energy-scale calibrations for photons, electrons, and muons as well as other analysis improvements, and supersedes the previous result from ATLAS. Upper limits on the total width of the Higgs boson are derived from fits to the invariant mass spectra of the H→γγ and H→ZZ ∗ →4ℓ decay channels.
Resumo:
This paper describes a measurement of the Z/ѵ* boson transverse momentum spectrum using ATLAS proton-proton collision data at a centre-of-mass energy of √s = 7 TeV at the LHC. The measurement is performed in the Z/ѵ* → e+e− and Z/ѵ* → μ+μ− channels, using data corresponding to an integrated luminosity of 4.7 fb−1. Normalized differential cross sections as a function of the Z/ѵ* boson transverse momentum are measured for transverse momenta up to 800 GeV. The measurement is performed inclusively for Z/ѵ* rapidities up to 2.4, as well as in three rapidity bins. The channel results are combined, compared to perturbative and resummed QCD calculations and used to constrain the parton shower parameters of Monte Carlo generators.
Resumo:
search is presented for production of dark-matter particles recoiling against a leptonically decaying Z boson in 20.3 fb−1 of pp collisions at √s=8 TeV with the ATLAS detector at the Large Hadron Collider. Events with large missing transverse momentum and two oppositely charged electrons or muons consistent with the decay of a Z boson are analyzed. No excess above the Standard Model prediction is observed. Limits are set on the mass scale of the contact interaction as a function of the dark-matter particle mass using an effective field theory description of the interaction of dark matter with quarks or with Z bosons. Limits are also set on the coupling and mediator mass of a model in which the interaction is mediated by a scalar particle.
Resumo:
A search is presented for direct top squark pair production using events with at least two leptons including a same-flavour opposite-sign pair with invariant mass consistent with the Z boson mass, jets tagged as originating from b-quarks and missing transverse momentum. The analysis is performed with proton–proton collision data at √ s = 8 TeV collected with the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of 20.3 fb−1. No excess beyond the Standard Model expectation is observed. Interpretations of the results are provided in models based on the direct pair production of the heavier top squark state (˜t2) followed by the decay to the lighter top squark state (˜t1) via ˜t2 → Z ˜t1, and for ˜t1 pair production in natural gaugemediated supersymmetry breaking scenarios where the neutralino (˜χ 01 ) is the next-to-lightest supersymmetric particle and decays producing a Z boson and a gravitino ( ˜G ) via the ˜χ 01→ Z ˜G process.
Resumo:
The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at ps = 7TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio ơ(W++c)/ơ(W−+c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s–s quark asymmetry.
Resumo:
A search for evidence of invisible-particle decay modes of a Higgs boson produced in association with a Z boson at the Large Hadron Collider is presented. No deviation from the standard model expectation is observed in 4.5 fb−1 (20.3 fb−1) of 7 (8) TeV pp collision data collected by the ATLAS experiment. Assuming the standard model rate for ZH production, an upper limit of 75%, at the 95% confidence level is set on the branching ratio to invisible-particle decay modes of the Higgs boson at a mass of 125.5 GeV. The limit on the branching ratio is also interpreted in terms of an upper limit on the allowed dark matter-nucleon scattering cross section within a Higgs-portal dark matter scenario. Within the constraints of such a scenario, the results presented in this Letter provide the strongest available limits for low-mass dark matter candidates. Limits are also set on an additional neutral Higgs boson, in the mass range 110 < mH < 400 GeV, produced in association with a Z boson and decaying to invisible particles.
Resumo:
A search is reported for a neutral Higgs boson in the decay channel H → Zγ, Z → ℓ+ℓ− (ℓ = e, μ), using 4.5 fb−1 of pp collisions at √s = 7 TeV and 20.3 fb−1 of pp collisions at √s = 8 TeV, recorded by the ATLAS detector at the CERN Large Hadron Collider. The observed distribution of the invariantmass of the three final-state particles, mℓℓγ, is consistent with the Standard Model hypothesis in the investigated mass range of 120–150 GeV. For a Higgs boson with a mass of 125.5 GeV, the observed upper limit at the 95% confidence level is 11 times the Standard Model expectation. Upper limits are set on the cross section times branching ratio of a neutral Higgs boson with mass in the range 120–150 GeV between 0.13 and 0.5 pb for √s = 8 TeV at 95% confidence level.
Resumo:
Measurements of fiducial cross sections for the electroweak production of two jets in association with a Z-boson are presented. The measurements are performed using 20.3 fb−1 of proton-proton collision data collected at a centre-of-mass energy of p s = 8TeV by the ATLAS experiment at the Large Hadron Collider. The electroweak component is extracted by a fit to the dijet invariant mass distribution in a fiducial region chosen to enhance the electroweak contribution over the dominant background in which the jets are produced via the strong interaction. The electroweak cross sections measured in two fiducial regions are in good agreement with the Standard Model expectations and the background-only hypothesis is rejected with significance above the 5ơ level. The electroweak process includes the vector boson fusion production of a Z-boson and the data are used to place limits on anomalous triple gauge boson couplings. In addition, measurements of cross sections and differential distributions for inclusive Z-boson-plus-dijet production are performed in five fiducial regions, each with different sensitivity to the electroweak contribution. The results are corrected for detector effects and compared to predictions from the Sherpa and Powheg event generators.
Resumo:
The process pp ! W±J/ provides a powerful probe of the production mechanism of charmonium in hadronic collisions, and is also sensitive to multiple parton interactions in the colliding protons. Using the 2011 ATLAS dataset of 4.5 fb−1 of p s =7TeV pp collisions at the LHC, the first observation is made of the production of W± +prompt J/ events in hadronic collisions, using W± → μѵμ and Jψ → μ+μ−. A yield of 27.4+7.5−6.5 W± + prompt J/ψ events is observed, with a statistical significance of 5.1ơ. The production rate as a ratio to the inclusive W± boson production rate is measured, and the double parton scattering contribution to the cross section is estimated.
Resumo:
The Semail ophiolite in Oman is capped by up to 2 km of basaltic-andesitic lavas that host copper-dominant, Cyprus-type, volcanogenic massive sulfide (VMS) deposits. This study identifies multiple volcanostratigraphic horizons on which the deposits are situated, based on characterization of footwall and hanging-wall lavas from 16 deposits or deposit clusters. Comparison of field and petrographic features, compositions of igneous clinopyroxenes, and whole-rock geochemical signatures permits classification of the lavas within a modified version of the established regional volcanostratigraphy. Four extrusive units host deposits: Geotimes (earliest), Lasail, Alley, and Boninitic Alley (latest). The latter was previously known only at few localities, but this study reveals its regional extent and significance as a host for VMS deposits. The Geotimes and Lasail units represent Late Cretaceous, ocean spreading ridge and related off-axis volcanic environments, respectively. The Alley and Boninitic Alley units represent younger, subduction-related volcanism prior to Coniacian-Santonian obduction of the ophiolite. Our results show that VMS deposits occur on or near the Geotimes/Lasail and Geotimes/Alley contacts as well as entirely within the Geotimes, Lasail, Alley, and Boninitic Alley units. Highest Cu grades tend to occur in deposits lying on or within the Geotimes, whereas highest Au grades occur in deposits within the Boninitic Alley. In contrast to earlier studies, we conclude that essentially every horizon marking a hiatus in lava deposition in the Semail ophiolite, i.e., contacts between the four major eruptive units, and umbers and sedimentary chert layers within the units, has exploration potential for Cu-Au VMS deposits.
Resumo:
Very recently, the ATLAS and CMS Collaborations reported diboson and dijet excesses above standard model expectations in the invariant mass region of 1.8–2.0 TeV. Interpreting the diboson excess of events in a model independent fashion suggests that the vector boson pair production searches are best described by WZ or ZZ topologies, because states decaying into W+W− pairs are strongly constrained by semileptonic searches. Under the assumption of a low string scale, we show that both the diboson and dijet excesses can be steered by an anomalous U(1) field with very small coupling to leptons. The Drell–Yan bounds are then readily avoided because of the leptophobic nature of the massive Z′ gauge boson. The non-negligible decay into ZZ required to accommodate the data is a characteristic footprint of intersecting D-brane models, wherein the Landau–Yang theorem can be evaded by anomaly-induced operators involving a longitudinal Z. The model presented herein can be viewed purely field-theoretically, although it is particularly well motivated from string theory. Should the excesses become statistically significant at the LHC13, the associated Zγ topology would become a signature consistent only with a stringy origin.
Resumo:
Charged massive matter fields of spin-0 and spin- 1/2 are quantized in the presence of an external uniform magnetic field in a spatial region bounded by two parallel plates. The most general set of boundary conditions at the plates, that is required by mathematical consistency and the self-adjointness of the Hamiltonian operator, is employed. The vacuum fluctuations of the matter field in the case of the magnetic field orthogonal to the plates are analyzed, and it is shown that the pressure from the vacuum onto the plates is positive and independent of the boundary condition, as well as of the distance between the plates. Possibilities of the detection of this new-type Casimir effect are discussed. Read More: http://www.worldscientific.com/doi/10.1142/S0217732315500996