109 resultados para land-use patterns


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article synthesizes findings from a review of the state of research on sustainable land management in Kyrgyzstan and Tajikistan and from an analysis of the interface between research and action. Using the Global Land Project (GLP 2005) analytical framework, we analyzed the distribution of 131 selected publications (including a clearly defined set of local and international academic and gray literature) across the framework's components and links in a social–ecological system. There is a strong emphasis in the literature on the impact of changes in land use and management on ecosystems; however, there is little research on the implications for ecosystem services. This finding is opposed to that of a similar analysis of publications at the global scale (Björnsen Gurung et al 2012). Another major gap was the lack of research on Kyrgyzstan and Tajikistan regarding the influence of global factors on social and ecological systems, despite social, economic, and political integration into global structures since the collapse of the Soviet Union and the increasing influence of climate change. Our analysis disaggregated academic literature published in the region and international academic literature, revealing stark differences. These differences are partly attributable to the legacy of the late Soviet era principle of “rational use of land resources,” which fit the planned economy but lacks approaches for decentralized resource governance. Finally, the emphasis of research on systems knowledge, the lack of transdisciplinary research, and the critical feedback of stakeholders at a regional sustainable land management forum suggest that actionable sustainable land management research on Kyrgyzstan and Tajikistan is rare. Recommendations are made for targeted, application-focused, multistakeholder research and knowledge sharing, including local and international researchers as well as practitioners, policy-makers, and land users.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In several regions of the world, climate change is expected to have severe impacts on agricultural systems. Changes in land management are one way to adapt to future climatic conditions, including land-use changes and local adjustments of agricultural practices. In previous studies, options for adaptation have mostly been explored by testing alternative scenarios. Systematic explorations of land management possibilities using optimization approaches were so far mainly restricted to studies of land and resource management under constant climatic conditions. In this study, we bridge this gap and exploit the benefits of multi-objective regional optimization for identifying optimum land management adaptations to climate change. We design a multi-objective optimization routine that integrates a generic crop model and considers two climate scenarios for 2050 in a meso-scale catchment on the Swiss Central Plateau with already limited water resources. The results indicate that adaptation will be necessary in the study area to cope with a decrease in productivity by 0–10 %, an increase in soil loss by 25–35 %, and an increase in N-leaching by 30–45 %. Adaptation options identified here exhibit conflicts between productivity and environmental goals, but compromises are possible. Necessary management changes include (i) adjustments of crop shares, i.e. increasing the proportion of early harvested winter cereals at the expense of irrigated spring crops, (ii) widespread use of reduced tillage, (iii) allocation of irrigated areas to soils with low water-retention capacity at lower elevations, and (iv) conversion of some pre-alpine grasslands to croplands.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Complementarity that leads to more efficient resource use is presumed to be a key mechanism explaining positive biodiversity–productivity relationships but has been described solely for experimental set-ups with controlled environmental settings or for very short gradients of abiotic conditions, land-use intensity and biodiversity. Therefore, we analysed plant diversity effects on nitrogen dynamics across a broad range of Central European grasslands. The 15N natural abundance in soil and plant biomass reflects the net effect of processes affecting ecosystem N dynamics. This includes the mechanism of complementary resource utilization that causes a decrease in the 15N isotopic signal. We measured plant species richness, natural abundance of 15N in soil and plants, above-ground biomass of the community and three single species (an herb, grass and legume) and a variety of additional environmental variables in 150 grassland plots in three regions of Germany. To explore the drivers of the nitrogen dynamics, we performed several analyses of covariance treating the 15N isotopic signals as a function of plant diversity and a large set of covariates. Increasing plant diversity was consistently linked to decreased δ15N isotopic signals in soil, above-ground community biomass and the three single species. Even after accounting for multiple covariates, plant diversity remained the strongest predictor of δ15N isotopic signals suggesting that higher plant diversity leads to a more closed nitrogen cycle due to more efficient nitrogen use. Factors linked to increased δ15N values included the amount of nitrogen taken up, soil moisture and land-use intensity (particularly fertilization), all indicators of the openness of the nitrogen cycle due to enhanced N-turnover and subsequent losses. Study region was significantly related to the δ15N isotopic signals indicating that regional peculiarities such as former intensive land use could strongly affect nitrogen dynamics. Synthesis. Our results provide strong evidence that the mechanism of complementary resource utilization operates in real-world grasslands where multiple external factors affect nitrogen dynamics. Although single species may differ in effect size, actively increasing total plant diversity in grasslands could be an option to more effectively use nitrogen resources and to reduce the negative environmental impacts of nitrogen losses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The role of Soil Organic Carbon (SOC) in mitigating climate change, indicating soil quality and ecosystem function has created research interested to know the nature of SOC at landscape level. The objective of this study was to examine variation and distribution of SOC in a long-term land management at a watershed and plot level. This study was based on meta-analysis of three case studies and 128 surface soil samples from Ethiopia. Three sites (Gununo, Anjeni and Maybar) were compared after considering two Land Management Categories (LMC) and three types of land uses (LUT) in quasi-experimental design. Shapiro-Wilk tests showed non-normal distribution (p = 0.002, a = 0.05) of the data. SOC median value showed the effect of long-term land management with values of 2.29 and 2.38 g kg-1 for less and better-managed watersheds, respectively. SOC values were 1.7, 2.8 and 2.6 g kg-1 for Crop (CLU), Grass (GLU) and Forest Land Use (FLU), respectively. The rank order for SOC variability was FLU>GLU>CLU. Mann-Whitney U and Kruskal-Wallis test showed a significant difference in the medians and distribution of SOC among the LUT, between soil profiles (p<0.05, confidence interval 95%, a = 0.05) while it is not significant (p>0.05) for LMC. The mean and sum rank of Mann Whitney U and Kruskal Wallis test also showed the difference at watershed and plot level. Using SOC as a predictor, cross-validated correct classification with discriminant analysis showed 46 and 49% for LUT and LMC, respectively. The study showed how to categorize landscapes using SOC with respect to land management for decision-makers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite the increasing acknowledgment of scholars and practitioners that many large-scale agricultural land acquisitions in developing countries fail or never materialize, empirical evidence about how and why they fail to date is still scarce. Too often, land deals are portrayed as straightforward investments and their success is taken for granted. Looking at the coffee sector in Laos, the authors of this article explore dimensions of the land grab debate that have not yet been sufficiently examined. Coffee concessionaires in southern Laos often fail to use all of the land granted them and fail to produce high yields on the land they do use. Thus, the authors challenge the often-assumed superiority and effectiveness of large-scale versus small-scale production, specifically the argument that they modernize agricultural production and optimize land use. They argue that examining failed investments is as important as studying successful ones for understanding the implications of the land grabbing phenomenon for social, economic, and environmental outcomes. Knowledge about the scale of “failed land deals” provides important motivation for national governments to close the gap between intentions and actual outcomes. This article engages with the current debate on quality of investment and challenges the approach of employing land concessions as a vehicle for economic development in the Lao coffee sector and in other sectors and countries.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This Strategy and Action Plan was written within the framework of the project on Sustainable Land Management in the High Pamir and Pamir-Alai Mountains (PALM). PALM is an integrated transboundary initiative of the governments of the Kyrgyz Republic and the Republic of Tajikistan. It aims to address the interlinked problems of land degradation and poverty within a region that is one of Central Asia’s crucial sources of freshwater and a location of biodiversity hotspots. The project is executed by the Committee on Environment Protection in Tajikistan and the National Center for Mountain Regions Development in Kyrgyzstan, with fi nancial support from the Global Environment Facility (GEF) and other donors. The United Nations Environment Programme (UNEP) is the GEF Implementing Agency for the project, and the United Nations University (UNU) is the International Executing Agency. This Strategy and Action Plan integrates the work of three main teams of experts, namely the Pamir-Alai Transboundary Strategy and Action Plan (PATSAP) team, the Legal Task Forces, and a team of Natural Disaster Risk specialists. The PATSAP team was coordinated by the Centre for Development and Environment (CDE), University of Bern, Switzerland. The Legal Task Force was led by the Australian Centre for Agriculture and Law of the University of New England (UNE), and responsibility for the Natural Disaster Risk assessment was with the Central- Asian Institute of Applied Geosciences (CAIAG) in Bishkek, Kyrgyzstan. The development of the strategy took place from June 2009 to October 2010. The activities included fi eld study tours for updating the information base with fi rst-hand information from the local level, coordination meetings with actors from the region, and two multi-level stakeholder forums conducted in Khorog and Osh to identify priorities and to collect ideas for concrete action plans. The baseline information collected for the Strategy and Action Plan has been compiled by the experts and made available as reports1. A joint multi-level stakeholder forum was conducted in Jirgitol, Tajikistan, for in-depth discussion of the transboundary aspects. In August 2010, the draft Strategy and Action Plan was distributed among local, national, and international actors for consultation, and their comments were discussed at feedback forums in Khorog and Bishkek. This Strategy and Action Plan is intended as a recommendation. Nevertheless, it proposes concrete mechanisms for implementing the proposed sustainable land management (SLM) activities: The Regional Natural Resources Governance Framework provides the legal and policy concepts, principles, and regulatory requirements needed to create an enabling environment for SLM in the High Pamir and Pamir-Alai region at the transboundary, national, and local levels. The priority directions outlined provide a framework for the elaboration of rayon-level strategies and for strategies on specifi c topics (forestry, livestock, etc.), as well as for further development of government programmes and international projects. The action plans may serve as a pool of concrete ideas, which can be taken up by diff erent institutions and in smaller or larger projects. Finally, this document provides a basis for the elaboration and signing of targeted cooperation agreements on land use and management between the leaders of Osh oblast (Kyrgyz Republic), Gorno Badakhshan Autonomous Oblast, and Jirgitol rayon (Republic of Tajikistan).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The stability of terrestrial carbon reservoirs is thought to be closely linked to variations in climate 1, but the magnitude of carbon–climate feedbacks has proved dificult to constrain for both modern 2–4 and millennial 5–13 timescales. Reconstructions of atmospheric CO2 concentrations for the past thousand years have shown fluctuations on multidecadal to centennial timescales 5–7, but the causes of these fluctuations are unclear. Here we report high-resolution carbon isotope measurements of CO2 trapped within the ice of the West Antarctic Ice Sheet Divide ice core for the past 1,000 years. We use a deconvolution approach 14 to show that changes in terrestrial organic carbon stores best explain the observed multidecadal variations in the 13 C of CO2 and in CO2 concentrations from 755 to 1850 CE. If significant long-term carbon emissions came from pre-industrial anthropogenic land-use changes over this interval, the emissions must have been offset by a natural terrestrial sink for 13 C-depleted carbon, such as peatlands. We find that on multidecadal timescales, carbon cycle changes seem to vary with reconstructed regional climate changes. We conclude that climate variability could be an important control of fluctuations in land carbon storage on these timescales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The north-eastern escarpment of Madagascar harbours the island’s last remaining large-scale humid forest massifs surrounded by a small-scale agricultural mosaic. There is high deforestation, commonly thought to be caused by shifting cultivation practiced by local land users to produce upland rice. However, little is known about the dynamics between forest and shifting cultivation systems at a regional level. Our study presents a first attempt to quantify changes in the extent of forest and different agricultural land cover classes, and to identify the main dynamics of land cover change for two intervals, 1995–2005 and 2005–2011. Over the 16-year study period, the speed of forest loss increased, the total area of upland rice production remained almost stable, and the area of irrigated rice fields slightly increased. While our findings seem to confirm a general trend of land use intensification, deforestation through shifting cultivation is still on the rise. Deforestation mostly affects the small forest fragments interspersed in the agricultural mosaic and is slowly leading to a homogenization of the landscape. These findings have important implications for future interventions to slow forest loss in the region, as the processes of agricultural expansion through shifting cultivation versus intensified land use cannot per se be considered mutually exclusive.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This report presents a basic analyis of the data collected on agroclimatology, erosion, and soil and water conservation at Afdeyu Station in the central highlands of Eritrea between 1984 and 2007. Datasets and graphs include rainfall, air and soil surface temperatures, soil loss, surface runoff, river discharge, and land use including cropping patterns of the measured catchment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Swiss Swiss Consultant Trust Fund (CTF) support covered the period from July to December 2007 and comprised four main tasks: (1) Analysis of historic land degradation trends in the four watersheds of Zerafshan, Surkhob, Toirsu, and Vanj; (2) Translation of standard CDE GIS training materials into Russian and Tajik to enable local government staff and other specialists to use geospatial data and tools; (3) Demonstration of geospatial tools that show land degradation trends associated with land use and vegetative cover data in the project areas, (4) Preliminary training of government staff in using appropriate data, including existing information, global datasets, inexpensive satellite imagery and other datasets and webbased visualization tools like spatial data viewers, etc. The project allowed building of local awareness of, and skills in, up-to-date, inexpensive, easy-to-use GIS technologies, data sources, and applications relevant to natural resource management and especially to sustainable land management. In addition to supporting the implementation of the World Bank technical assistance activity to build capacity in the use of geospatial tools for natural resource management, the Swiss CTF support also aimed at complementing the Bank supervision work on the ongoing Community Agriculture and Watershed Management Project (CAWMP).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent decades, a number of global frameworks have been developed for disaster risk reduction (DRR). The Hyogo Framework for Action 2005–2015 and its successor document, the Sendai Framework for Disaster Risk Reduction, adopted in Japan in March 2015, provide general guidance for reducing risks from natural hazards. This is particularly important for mountainous areas, but DRR for mountain areas and sustainable mountain development received little attention in the recent policy debate. The question remains whether the Hyogo and Sendai frameworks can provide guidance for sustainable mountain development. This article evaluates the 2 frameworks in light of the special challenges of DRR in mountain areas and argues that, while the frameworks offer valuable guidance, they need to be further adapted for local contexts—particularly for mountain areas, which require special attention because of changing risk patterns like the effects of climate change and high land-use pressure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent studies on the avalanche risk in alpine settlements suggested a strong dependency of the development of risk on variations in damage potential. Based on these findings, analyses on probable maximum losses in avalanche-prone areas of the municipality of Davos (CH) were used as an indicator for the long-term development of values at risk. Even if the results were subject to significant uncertainties, they underlined the dependency of today's risk on the historical development of land-use: Small changes in the lateral extent of endangered areas had a considerable impact on the exposure of values. In a second step, temporal variations in damage potential between 1950 and 2000 were compared in two different study areas representing typical alpine socio-economic development patterns: Davos (CH) and Galtür (A). The resulting trends were found to be similar; the damage potential increased significantly in number and value. Thus, the development of natural risk in settlements can for a major part be attributed to long-term shifts in damage potential.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

GIS layers on Human-Elephant conflicts in Laikipia District: aerial counts, wildlife distribution, land-use, Human-Elephant conflicts hotspots and temporal patterns, and conflict deterrence activities

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Land systems are the result of human interactions with the natural environment. Understanding the drivers, state, trends and impacts of different land systems on social and natural processes helps to reveal how changes in the land system affect the functioning of the socio-ecological system as a whole and the tradeoff these changes may represent. The Global Land Project has led advances by synthesizing land systems research across different scales and providing concepts to further understand the feedbacks between social-and environmental systems, between urban and rural environments and between distant world regions. Land system science has moved from a focus on observation of change and understanding the drivers of these changes to a focus on using this understanding to design sustainable transformations through stakeholder engagement and through the concept of land governance. As land use can be seen as the largest geo-engineering project in which mankind has engaged, land system science can act as a platform for integration of insights from different disciplines and for translation of knowledge into action.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The north-eastern escarpment of Madagascar contains the island’s last remaining large-scale humid forest massifs surrounded by diverse small-scale agricultural mosaics. There is high deforestation mainly caused by shifting cultivation practiced by local land users to produce upland rice for subsistence. Today, large protected areas restrict land users’ access to forests to collect wood and other forest products. Moreover, they are no more able to expand their cultivated land, which leads to shorter shifting cultivation cycles and decreasing plot sizes for irrigated rice and cash crop cultivation. Cash crop production of clove and vanilla is exposed to risks such as extreme inter-annual price fluctuations, pests and cyclones. In the absence of work opportunities, agricultural extension services and micro-finance schemes people are stuck in a poverty trap. New development strategies are needed to mitigate the trade-offs between forest conservation and human well-being. As landscape composition and livelihood strategies vary across the region, these strategies need to be spatially differentiated to avoid implementing generic solutions, which do not fit the local context. However, up to date, little is known about the spatial patterns of shifting cultivation and other land use systems at the regional level. This is mainly due to the high spatial and temporal dynamics inherent to shifting cultivation, which makes it difficult to monitor the dynamics of this land use system with remote sensing methods. Furthermore, knowledge about land users’ livelihood strategies and the risks and opportunities they face stems from very few local case studies. To overcome this challenge, firstly, we used remote sensing data and a landscape mosaic approach to delineate the main landscape types at the regional level. Secondly, we developed a land user typology based on socio-ecological data from household surveys in 45 villages spread throughout the region. Combining the land user typology with the landscape mosaic map allowed us to reveal spatial patterns of the interaction between landscapes and people and to better understand the trade-offs between forest conservation and local wellbeing. While shifting cultivation systems are being transformed into more intensive permanent agricultural systems in many countries around the globe, Madagascar seems to be an exception to this trend. Linking land cover information to human-environmental interactions over large areas is crucial to designing policies and to inform decision making for a more sustainable development of this resource-rich but poverty-prone context.