94 resultados para ivsual analogue scales


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the material properties of 26 granular analogue materials used in 14 analogue modelling laboratories. We determined physical characteristics such as bulk density, grain size distribution, and grain shape, and performed ring shear tests to determine friction angles and cohesion, and uniaxial compression tests to evaluate the compaction behaviour. Mean grain size of the materials varied between c. 100 and 400 μm. Analysis of grain shape factors shows that the four different classes of granular materials (14 quartz sands, 5 dyed quartz sands, 4 heavy mineral sands and 3 size fractions of glass beads) can be broadly divided into two groups consisting of 12 angular and 14 rounded materials. Grain shape has an influence on friction angles, with most angular materials having higher internal friction angles (between c. 35° and 40°) than rounded materials, whereas well-rounded glass beads have the lowest internal friction angles (between c. 25° and 30°). We interpret this as an effect of intergranular sliding versus rolling. Most angular materials have also higher basal friction angles (tested for a specific foil) than more rounded materials, suggesting that angular grains scratch and wear the foil. Most materials have an internal cohesion in the order of 20–100 Pa except for well-rounded glass beads, which show a trend towards a quasi-cohesionless (C < 20 Pa) Coulomb-type material. The uniaxial confined compression tests reveal that rounded grains generally show less compaction than angular grains. We interpret this to be related to the initial packing density after sifting, which is higher for rounded grains than for angular grains. Ring-shear test data show that angular grains undergo a longer strain-hardening phase than more rounded materials. This might explain why analogue models consisting of angular grains accommodate deformation in a more distributed manner prior to strain localisation than models consisting of rounded grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analogue and finite element numerical models with frictional and viscous properties are used to model thrust wedge development. Comparison between model types yields valuable information about analogue model evolution, scaling laws and the relative strengths and limitations of the techniques. Both model types show a marked contrast in structural style between ‘frictional-viscous domains’ underlain by a thin viscous layer and purely ‘frictional domains’. Closely spaced thrusts form a narrow and highly asymmetric fold-and-thrust belt in the frictional domain, characterized by in-sequence propagation of forward thrusts. In contrast, the frictional-viscous domain shows a wide and low taper wedge and a thrust belt with a more symmetrical vergence, with both forward and back thrusts. The frictional-viscous domain numerical models show that the viscous layer initially simple shears as deformation propagates along it, while localized deformation resulting in the formation of a pop-up structure occurs in the overlying frictional layers. In both domains, thrust shear zones in the numerical model are generally steeper than the equivalent faults in the analogue model, because the finite element code uses a non-associated plasticity flow law. Nevertheless, the qualitative agreement between analogue and numerical models is encouraging. It shows that the continuum approximation used in numerical models can be used to model frictional materials, such as sand, provided caution is taken to properly scale the experiments, and some of the limitations are taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of analogue model experiments in geology is to simulate structures in nature under specific imposed boundary conditions using materials whose rheological properties are similar to those of rocks in nature. In the late 1980s, X-ray computed tomography (CT) was first applied to the analysis of such models. In early studies only a limited number of cross-sectional slices could be recorded because of the time involved in CT data acquisition, the long cooling periods for the X-ray source and computational capacity. Technological improvements presently allow an almost unlimited number of closely spaced serial cross-sections to be acquired and calculated. Computer visualization software allows a full 3D analysis of every recorded stage. Such analyses are especially valuable when trying to understand complex geological structures, commonly with lateral changes in 3D geometry. Periodic acquisition of volumetric data sets in the course of the experiment makes it possible to carry out a 4D analysis of the model, i.e. 3D analysis through time. Examples are shown of 4D analysis of analogue models that tested the influence of lateral rheological changes on the structures obtained in contractional and extensional settings.