149 resultados para immune-mediated inflammatory diseases
Resumo:
Recent advances in the identification of susceptibility genes and environmental exposures provide broad support for a post-infectious autoimmune basis for narcolepsy/hypocretin (orexin) deficiency. We genotyped loci associated with other autoimmune and inflammatory diseases in 1,886 individuals with hypocretin-deficient narcolepsy and 10,421 controls, all of European ancestry, using a custom genotyping array (ImmunoChip). Three loci located outside the Human Leukocyte Antigen (HLA) region on chromosome 6 were significantly associated with disease risk. In addition to a strong signal in the T cell receptor alpha (TRA@), variants in two additional narcolepsy loci, Cathepsin H (CTSH) and Tumor necrosis factor (ligand) superfamily member 4 (TNFSF4, also called OX40L), attained genome-wide significance. These findings underline the importance of antigen presentation by HLA Class II to T cells in the pathophysiology of this autoimmune disease.
Resumo:
Apoptosis is the most common form of physiological cell death and a necessary process to maintain cell numbers in multicellular organisms. Eosinophils are constantly produced in the bone marrow and the same numbers die, under normal circumstances, within a relatively short time period. In many eosinophilic inflammatory diseases, reduced eosinophil apoptosis has been described. This mechanism may contribute to increased eosinophil numbers, a phenomenon called eosinophilia. Overexpression of interleukin-5 appears to be crucial for delaying eosinophil apoptosis in many allergic disorders. Survival factor withdrawal leads to the induction of apoptosis. Besides survival cytokines, eosinophil apoptosis is also regulated by death factors. Recent observations suggest a role for mitochondria in conducting eosinophil apoptosis, although the mechanisms that trigger mitochondria to release proapoptotic factors remain less clear. Drugs that specifically induce eosinophil apoptosis might be useful for triggering the resolution of unwanted eosinophilic inflammatory responses.
Resumo:
TNFalpha is known to stimulate the development and activity of osteoclasts and of bone resorption. The cytokine was found to mediate bone loss in conjunction with inflammatory diseases such as rheumatoid arthritis or chronic aseptic inflammation induced by wear particles from implants and was suggested to be a prerequisite for the loss of bone mass under estrogen deficiency. In the present study, the regulation of osteoclastogenesis by TNFalpha was investigated in co-cultures of osteoblasts and bone marrow or spleen cells and in cultures of bone marrow and spleen cells grown with CSF-1 and RANKL. Low concentrations of TNFalpha (1 ng/ml) caused a >90% decrease in the number of osteoclasts in co-cultures, but did not affect the development of osteoclasts from bone marrow cells. In cultures with p55TNFR(-/-) osteoblasts and wt BMC, the inhibitory effect was abrogated and TNFalpha induced an increase in the number of osteoclasts in a dose-dependent manner. Osteoblasts were found to release the inhibitory factor(s) into the culture supernatant after simultaneous treatment with 1,25(OH)(2)D(3) and TNFalpha, this activity, but not its release, being resistant to treatment with anti-TNFalpha antibodies. Dexamethasone blocked the secretion of the TNFalpha-dependent inhibitor by osteoblasts, while stimulating the development of osteoclasts. The data suggest that the effects of TNFalpha on the differentiation of osteoclast lineage cells and on bone metabolism may be more complex than hitherto assumed and that these effects may play a role in vivo during therapies for inflammatory diseases.
Resumo:
The role of platelets as inflammatory cells is demonstrated by the fact that they can release many growth factors and inflammatory mediators, including chemokines, when they are activated. The best known platelet chemokine family members are platelet factor 4 (PF4) and beta-thromboglobulin (beta-TG), which are synthesized in megakaryocytes, stored as preformed proteins in alpha-granules and released from activated platelets. However, platelets also contain many other chemokines such as interleukin-8 (IL-8), growth-regulating oncogene-alpha(GRO-alpha), epithelial neutrophil-activating protein 78 (ENA-78), regulated on activation normal T expressed and secreted (RANTES), macrophage inflammatory protein-1alpha (MIP-1alpha), and monocyte chemotactic protein-3 (MCP-3). They also express chemokine receptors such as CCR4, CXCR4, CCR1 and CCR3. Platelet activation is a feature of many inflammatory diseases such as heparin-induced thrombocytopenia, acquired immunodeficiency syndrome, and congestive heart failure. Substantial amounts of PF4, beta-TG and RANTES are released from platelets on activation, which may occur during storage. Although very few data are available on the in vivo effects of transfused chemokines, it has been suggested that the high incidence of adverse reactions often observed after platelet transfusions may be attributed to the chemokines present in the plasma of stored platelet concentrates.
Resumo:
Reactive nitrogen oxide species (RNOS) have been implicated as effector molecules in inflammatory diseases. There is emerging evidence that gamma-tocopherol (gammaT), the major form of vitamin E in the North American diet, may play an important role in these diseases. GammaT scavenges RNOS such as peroxynitrite by forming a stable adduct, 5-nitro-gammaT (NGT). Here we describe a convenient HPLC method for the simultaneous determination of NGT, alphaT, and gammaT in blood plasma and other tissues. Coulometric detection of NGT separated on a deactivated reversed-phase column was linear over a wide range of concentrations and highly sensitive (approximately 10 fmol detection limit). NGT extracted from blood plasma of 15-week-old Fischer 344 rats was in the low nM range, representing approximately 4% of gammaT. Twenty-four h after intraperitoneal injection of zymosan, plasma NGT levels were 2-fold higher compared to fasted control animals when adjusted to gammaT or corrected for total neutral lipids, while alpha- and gammaT levels remained unchanged. These results demonstrate that nitration of gammaT is increased under inflammatory conditions and highlight the importance of RNOS reactions in the lipid phase. The present HPLC method should be helpful in clarifying the precise physiological role of gammaT.
Resumo:
Trousseau Syndrome is a paraneoplastic procoagulant phenomenon. Heparin-induced thrombocytopenia (HIT) is a rare complication of anticoagulation with heparin. To our knowledge, the coincidence of the two has not been reported so far. We report a case of an acute thrombosis of the left femoral artery and distal leg arteries in a patient with an otherwise normal cardiovascular status. Endovascular revascularization attempts using mechanical rotational thrombectomy catheter, aspiration and local thrombolysis were unsuccessful. Progressive coagulation along the intra-arterial catheter was seen. Surgical thrombectomy of the femoral-pedal axis was successful, but the patient developed an immune-mediated HIT postoperatively. An adenocarcinoma of the colon was the likely cause for the initial arterial thrombosis, and probably adversely affected endovascular revascularization attempts. Subsequent HIT with microvascular thrombosis worsened ischemic damage leading to a below knee-amputation, despite patent large vessels. Compared to venous thrombosis, arterial thrombosis is a rare manifestation of Trousseau syndrome. The coincidence of it with HIT is even rarer. There may be a causal relationship between the two.
Resumo:
OBJECTIVE: Apoptosis of pancreatic beta-cells is critical in both diabetes development and failure of islet transplantation. The role in these processes of pro- and antiapoptotic Bcl-2 family proteins, which regulate apoptosis by controlling mitochondrial integrity, remains poorly understood. We investigated the role of the BH3-only protein Bid and the multi-BH domain proapoptotic Bax and Bak, as well as prosurvival Bcl-2, in beta-cell apoptosis. RESEARCH DESIGN AND METHODS: We isolated islets from mice lacking Bid, Bax, or Bak and those overexpressing Bcl-2 and exposed them to Fas ligand, tumor necrosis factor (TNF)-alpha, and proinflammatory cytokines or cytotoxic stimuli that activate the mitochondrial apoptotic pathway (staurosporine, etoposide, gamma-radiation, tunicamycin, and thapsigargin). Nuclear fragmentation was measured by flow cytometry. RESULTS: Development and function of islets were not affected by loss of Bid, and Bid-deficient islets were as susceptible as wild-type islets to cytotoxic stimuli that cause apoptosis via the mitochondrial pathway. In contrast, Bid-deficient islets and those overexpressing antiapoptotic Bcl-2 were protected from Fas ligand-induced apoptosis. Bid-deficient islets were also resistant to apoptosis induced by TNF-alpha plus cycloheximide and were partially resistant to proinflammatory cytokine-induced death. Loss of the multi-BH domain proapoptotic Bax or Bak protected islets partially from death receptor-induced apoptosis. CONCLUSIONS: These results demonstrate that Bid is essential for death receptor-induced apoptosis of islets, similar to its demonstrated role in hepatocytes. This indicates that blocking Bid activity may be useful for protection of islets from immune-mediated attack and possibly also in other pathological states in which beta-cells are destroyed.
Resumo:
TNF plays fundamental roles in the induction and perpetuation of inflammation. The effects of TNF are mediated through TNF receptor (TNFR) 1 or 2. As these two receptors mediate different functions, selective targeting of one receptor may represent a more specific treatment for inflammatory disorders than the complete blocking of TNF. TNFR2 expression is up-regulated in inflammatory bowel disease. Hence, we directly assessed the role of TNFR2 signaling in the CD4(+) T-cell transfer model of colitis using TNFR2(-/-) or WT mice as donors of colitogenic CD4(+)CD45RB(hi) T cells for transfer into syngeneic RAG2(-/-) or RAG2(-/-)TNFR2(-/-) recipient mice. Although the absence of TNFR2 expression by non-lymphoid cells of the recipient mice does not influence the course of colitis, transfer of TNFR2(-/-) CD4(+) T cells leads to an accelerated onset of disease and to more severe signs of inflammation. The enhanced colitogenic potential of TNFR2(-/-) CD4(+) T cells is associated with reduced activation-induced cell death, resulting in an increased accumulation of TNFR2(-/-) CD4(+) T cells. Hence, TNFR2 signaling is crucial for the TNF-dependent contraction of the disease-inducing T cells. Therefore, a selective blocking of TNFR2 may lead to exacerbation rather than attenuation of T-cell-mediated inflammatory disorders.
Resumo:
Drug hypersensitivity represents an immune-mediated reaction to a drug. Although several drug hypersensitivity reactions are confined to the skin and rather mild, some may be life threatening and also involve further organs such as liver, kidney and bone marrow. The exact pathogenesis of many drug hypersensitivity reactions is still obscure. In this review the concepts on how small molecular drugs can activate the immune system are discussed and the hapten, prohapten and p-i concept are explained. Furthermore, the classification of drug hypersensitivity reactions and some common and severe clinical manifestations of drug-induced T cell mediated reactions are presented.
Resumo:
BACKGROUND: Psoriasis is a chronic immune-mediated skin disease, in which interleukins 12 and 23 have been postulated to play a critical role. However, the cellular source of these cytokines in psoriatic lesions are still poorly defined and their relative contribution in inducing skin inflammation has been discussed controversially. OBJECTIVES: To investigate immunoreactivity of the bioactive forms of IL-12 and IL-23 in plaque psoriasis and to characterize the dendritic cell (DC) and macrophage subsets responsible for the production of these cytokines. METHODS: Immunohistochemistry was performed on normal skin (n=11) as well as non-lesional (n=11) and lesional (n=11) skin of patients with plaque psoriasis using monoclonal antibodies targeting the bioactive forms of IL-12 (IL-12p70) and IL-23 (IL-23p19/p40) on serial cryostat sections using the alkaline phosphatase-antialkaline phosphatase. Co-localization of IL-12 and IL-23 with different dendritic cells and macrophage cell markers (CD1a, CD11c, CD14, CD32, CD68, CD163, CD208/DC-LAMP) was performed using double immunofluorescence staining. RESULTS: Immunoreactivity for IL-12 and IL-23 was significantly enhanced in lesional psoriatic skin as compared to non-lesional and normal skin. No difference was observed between IL-12 and IL-23 immunoreactivity in any skin types. Both IL-12 and IL-23 immunoreactivity was readily detected mainly in CD11c+, CD14+, CD32+, CD68+ and some CD163+, DC-LAMP+ cells. IL-12 and occasionally IL-23 were also found in some CD1a+ dendritic cells. In addition, an enhanced expression mainly of IL-23 was observed in keratinocytes. CONCLUSIONS: Bioactive forms of IL-12 and IL-23 are highly expressed in various DC and macrophage subsets and their marked in situ production suggest that both cytokines have crucial pathogenic role in psoriasis.
Resumo:
We identified English-language publications on hypersensitivity reactions to xenobiotics through the PubMed database, using the search terms drug and/or xenobiotic, hypersensitivity reaction, mechanism, and immune mediated. We analyzed articles pertaining to the mechanism and the role of T cells. Immune hypersensitivity reactions to drugs are mediated predominantly by IgE antibodies or T cells. The mechanism of IgE-mediated reactions is well investigated, but the mechanisms of T-cell-mediated drug hypersensitivity are not well understood. The literature describes 2 concepts: the hapten/prohapten concept and the concept of pharmacological interactions of drugs with immune receptors. In T-cell-mediated allergic drug reactions, the specificity of the T-cell receptor that is stimulated by the drug may often be directed to a cross-reactive major histocompatibility complex-peptide compound. Thus, previous contact with the causative drug is not obligatory, and an immune mechanism should be considered as the cause of hypersensitivity, even in reactions that occur on primary exposure. Indeed, immune-mediated reactions to xenobiotics in patients without prior exposure to the agent have been described recently for radiocontrast media and neuromuscular blocking agents. Thus, the "allergenic" potential of a drug under development should be evaluated not only by screening its haptenlike characteristics but also by assessing its direct immunostimulatory potential.
Resumo:
Drug allergies are adverse drug reactions mediated by the specific immune system. Despite characteristic signs (eg, skin rash) that raise awareness for possible drug allergies, they are great imitators of disease and may hide behind unexpected symptoms. No single standardized diagnostic test can confirm the immune-mediated mechanism or identify the causative drug; therefore, immune-mediated drug hypersensitivity reactions and their causative drugs must be recognized by the constellation of exposure, timing, and clinical features including the pattern of organ manifestation. Additional allergologic investigations (skin tests, in vitro tests, provocation tests) may provide help in identifying the possible eliciting drug.
Resumo:
BACKGROUND Neutrophilic dermatoses comprise a wide spectrum of inflammatory diseases with overlapping features characterized histologically by the presence of an aseptic neutrophilic infiltrate in the epidermis, dermis, and/or hypodermis and are often associated with systemic inflammatory and neoplastic disorders. OBSERVATIONS We describe 3 patients with an unusual neutrophilic dermatosis characterized by relapsing episodes of fever, widespread infiltrated plaques with bullous appearance, and variable involvement of the arms, legs, abdomen, and/or trunk. Light microscopy studies showed marked edema of the papillary dermis with an inflammatory infiltrate consisting mainly of mature neutrophils. All 3 patients were morbidly obese, and workup revealed underlying cancer in 2 cases: myeloma and breast carcinoma. Management of the underlying disease resulted in long-term remission of the skin disease. CONCLUSIONS The clinicopathologic features in our 3 cases best correspond to a widespread giant cellulitis-like form of Sweet syndrome. Knowledge of this newly observed unusual variant of Sweet syndrome within the broad spectrum of neutrophilic diseases is important for its prompt and proper management.
Resumo:
BACKGROUND Histamine is an ubiquitous inflammatory mediator of numerous physiological processes. Histamine and its receptors have been implicated in multiple sclerosis (MS) disease pathogenesis. We prospectively enrolled 36 MS patients and 19 age and gender-matched healthy volunteers for cerebrospinal fluid (CSF) histamine analysis. FINDINGS CSF HISTAMINE LEVELS IN MS PATIENT SAMPLES WERE SIGNIFICANTLY HIGHER (MEDIAN: 35.6 pg/ml) than in controls (median: 5.5 pg/ml; Beta = 0.525, p < 0.001). In addition, histamine increased with age (Pearson's correlation, p < 0.003). CONCLUSIONS Histamine may be an important factor for both the initiation and maintenance of chronic inflammatory diseases of the central nervous system. Our observation encourages a deeper investigation of the role of histamine in MS.
Resumo:
T helper type 9 (TH9) cells can mediate tumor immunity and participate in autoimmune and allergic inflammation in mice, but little is known about the TH9 cells that develop in vivo in humans. We isolated T cells from human blood and tissues and found that most memory TH9 cells were skin-tropic or skin-resident. Human TH9 cells coexpressed tumor necrosis factor-α and granzyme B and lacked coproduction of TH1/TH2/TH17 cytokines, and many were specific for Candida albicans. Interleukin-9 (IL-9) production was transient and preceded the up-regulation of other inflammatory cytokines. Blocking studies demonstrated that IL-9 was required for maximal production of interferon-γ, IL-9, IL-13, and IL-17 by skin-tropic T cells. IL-9-producing T cells were increased in the skin lesions of psoriasis, suggesting that these cells may contribute to human inflammatory skin disease. Our results indicate that human TH9 cells are a discrete T cell subset, many are tropic for the skin, and although they may function normally to protect against extracellular pathogens, aberrant activation of these cells may contribute to inflammatory diseases of the skin.