125 resultados para fault-tolerant scheduling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we are concerned about the short-term scheduling of industrial make-and-pack production processes. The planning problem consists in minimizing the production makespan while meeting given end-product demands. Sequence-dependent changeover times, multi-purpose storage units with finite capacities, quarantine times, batch splitting, partial equipment connectivity, material transfer times, and a large number of operations contribute to the complexity of the problem. Known MILP formulations cover all technological constraints of such production processes, but only small problem instances can be solved in reasonable CPU times. In this paper, we develop a heuristic in order to tackle large instances. Under this heuristic, groups of batches are scheduled iteratively using a novel MILP formulation; the assignment of the batches to the groups and the scheduling sequence of the groups are determined using a priority rule. We demonstrate the applicability by means of a real-world production process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with an event-bus tour booked by Bollywood film fans. During the tour, the participants visit selected locations of famous Bollywood films at various sites in Switzerland. Moreover, the tour includes stops for lunch and shopping. Each day, up to five buses operate the tour; for organizational reasons, two or more buses cannot stay at the same location simultaneously. The planning problem is how to compute a feasible schedule for each bus such that the total waiting time (primary objective) and the total travel time (secondary objective) are minimized. We formulate this problem as a mixed-integer linear program, and we report on computational results obtained with the Gurobi solver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with “The Enchanted Journey,” which is a daily event tour booked by Bollywood-film fans. During the tour, the participants visit original sites of famous Bollywood films at various locations in Switzerland; moreover, the tour includes stops for lunch and shopping. Each day, up to five buses operate the tour. For operational reasons, however, two or more buses cannot stay at the same location simultaneously. Further operative constraints include time windows for all activities and precedence constraints between some activities. The planning problem is how to compute a feasible schedule for each bus. We implement a two-step hierarchical approach. In the first step, we minimize the total waiting time; in the second step, we minimize the total travel time of all buses. We present a basic formulation of this problem as a mixed-integer linear program. We enhance this basic formulation by symmetry-breaking constraints, which reduces the search space without loss of generality. We report on computational results obtained with the Gurobi Solver. Our numerical results show that all relevant problem instances can be solved using the basic formulation within reasonable CPU time, and that the symmetry-breaking constraints reduce that CPU time considerably.