140 resultados para element


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Femoral fracture is a common medical problem in osteoporotic individuals. Bone mineral density (BMD) is the gold standard measure to evaluate fracture risk in vivo. Quantitative computed tomography (QCT)-based homogenized voxel finite element (hvFE) models have been proved to be more accurate predictors of femoral strength than BMD by adding geometrical and material properties. The aim of this study was to evaluate the ability of hvFE models in predicting femoral stiffness, strength and failure location for a large number of pairs of human femora tested in two different loading scenarios. Methods Thirty-six pairs of femora were scanned with QCT and total proximal BMD and BMC were evaluated. For each pair, one femur was positioned in one-legged stance configuration (STANCE) and the other in a sideways configuration (SIDE). Nonlinear hvFE models were generated from QCT images by reproducing the same loading configurations imposed in the experiments. For experiments and models, the structural properties (stiffness and ultimate load), the failure location and the motion of the femoral head were computed and compared. Results In both configurations, hvFE models predicted both stiffness (R2=0.82 for STANCE and R2=0.74 for SIDE) and femoral ultimate load (R2=0.80 for STANCE and R2=0.85 for SIDE) better than BMD and BMC. Moreover, the models predicted qualitatively well the failure location (66% of cases) and the motion of the femoral head. Conclusions The subject specific QCT-based nonlinear hvFE model cannot only predict femoral apparent mechanical properties better than densitometric measures, but can additionally provide useful qualitative information about failure location.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-resolution α, x-ray, and γ-ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum für Schwerionenforschung. Thirty correlated α-decay chains were detected following the fusion-evaporation reaction Ca48+Am243. The observations are consistent with previous assignments of similar decay chains to originate from element Z=115. For the first time, precise spectroscopy allows the derivation of excitation schemes of isotopes along the decay chains starting with elements Z>112. Comprehensive Monte Carlo simulations accompany the data analysis. Nuclear structure models provide a first level interpretation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die dicht besiedelten lateinamerikanischen Metropolräume zeichnen sich heutzutage durch eine komplexe Dynamik der urbanen Sozialstruktur aus. Räumliche und soziokulturelle Segregationsprozesse – ausgelöst durch politische und ökonomische Umstrukturierungen und verstärkt durch die Einflüsse der Globalisierung – führten zu einer ausgeprägten Fragmentierung des urbanen Raumes. Soziale Ausgrenzung einerseits und bewusste Abschottung andererseits lassen innerhalb der einzelnen, immer stärker getrennten Stadtteile einen Drang zur Homogenisierung und Konzentration von Bevölkerungsgruppen mit ähnlichem sozioökonomischen Status feststellen. Im Zuge dieser urbanen Transformationen kommt der Identifikation mit einem bestimmten Ort innerhalb der Stadt eine stets größere Bedeutung zu. Dieses räumliche Verhalten ist Teil eines Lebensstils als ganzheitliches und vielschichtiges Phänomen (Auer 2007: 11), welches neben der Ortsgebundenheit auch durch soziokulturelle Verhaltensmuster, durch Konsumverhalten und schließlich durch den Sprachgebrauch zum Ausdruck kommt. Sprachliche Varietäten oder Merkmale als semiotisches Element konstituieren zusammen mit weiteren Faktoren den Lebensstil sozialer Gruppen im Raum und bilden demnach sowohl eine zentrale Komponente als auch ein Medium der sozialräumlichen Identitätskonstruktion. Unterschiede im Sprachgebrauch werden als Teil einer (räumlichen) Identität wahrgenommen, in Abhängigkeit der Repräsentationen und mentalen Bildern der Sprecher bezüglich des urbanen Raumes beurteilt und schließlich stilisiert. So spielen sie eine zentrale Rolle beim Ausdruck von Abgrenzung oder Zugehörigkeit zu einer sozialen Gruppe und geben vor dem historischen und geopolitischen Hintergrund einer Stadt Aufschluss über deren Sozialstruktur. Ausgehend von diesem konstruktivistischen Verständnis des Raumes als mehrdimensionales soziales Produkt im Sinne von Lefebvre (1974) werden an dem für die Entwicklungen der lateinamerikanischen Städte paradigmatischen Beispiel von Buenos Aires theoretische Überlegungen und methodische Herangehensweisen für die Erforschung des Zusammenhangs von sprachlicher Variation und sozialräumlicher Segregation dargestellt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative computer tomography (QCT)-based finite element (FE) models of vertebral body provide better prediction of vertebral strength than dual energy X-ray absorptiometry. However, most models were validated against compression of vertebral bodies with endplates embedded in polymethylmethalcrylate (PMMA). Yet, loading being as important as bone density, the absence of intervertebral disc (IVD) affects the strength. Accordingly, the aim was to assess the strength predictions of the classic FE models (vertebral body embedded) against the in vitro and in silico strengths of vertebral bodies loaded via IVDs. High resolution peripheral QCT (HR-pQCT) were performed on 13 segments (T11/T12/L1). T11 and L1 were augmented with PMMA and the samples were tested under a 4° wedge compression until failure of T12. Specimen-specific model was generated for each T12 from the HR-pQCT data. Two FE sets were created: FE-PMMA refers to the classical vertebral body embedded model under axial compression; FE-IVD to their loading via hyperelastic IVD model under the wedge compression as conducted experimentally. Results showed that FE-PMMA models overestimated the experimental strength and their strength prediction was satisfactory considering the different experimental set-up. On the other hand, the FE-IVD models did not prove significantly better (Exp/FE-PMMA: R²=0.68; Exp/FE-IVD: R²=0.71, p=0.84). In conclusion, FE-PMMA correlates well with in vitro strength of human vertebral bodies loaded via real IVDs and FE-IVD with hyperelastic IVDs do not significantly improve this correlation. Therefore, it seems not worth adding the IVDs to vertebral body models until fully validated patient-specific IVD models become available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disc degeneration, usually associated with low back pain and changes of intervertebral stiffness, represents a major health issue. As the intervertebral disc (IVD) morphology influences its stiffness, the link between mechanical properties and degenerative grade is partially lost without an efficient normalization of the stiffness with respect to the morphology. Moreover, although the behavior of soft tissues is highly nonlinear, only linear normalization protocols have been defined so far for the disc stiffness. Thus, the aim of this work is to propose a nonlinear normalization based on finite elements (FE) simulations and evaluate its impact on the stiffness of human anatomical specimens of lumbar IVD. First, a parameter study involving simulations of biomechanical tests (compression, flexion/extension, bilateral torsion and bending) on 20 FE models of IVDs with various dimensions was carried out to evaluate the effect of the disc's geometry on its compliance and establish stiffness/morphology relations necessary to the nonlinear normalization. The computed stiffness was then normalized by height (H), cross-sectional area (CSA), polar moment of inertia (J) or moments of inertia (Ixx, Iyy) to quantify the effect of both linear and nonlinear normalizations. In the second part of the study, T1-weighted MRI images were acquired to determine H, CSA, J, Ixx and Iyy of 14 human lumbar IVDs. Based on the measured morphology and pre-established relation with stiffness, linear and nonlinear normalization routines were then applied to the compliance of the specimens for each quasi-static biomechanical test. The variability of the stiffness prior to and after normalization was assessed via coefficient of variation (CV). The FE study confirmed that larger and thinner IVDs were stiffer while the normalization strongly attenuated the effect of the disc geometry on its stiffness. Yet, notwithstanding the results of the FE study, the experimental stiffness showed consistently higher CV after normalization. Assuming that geometry and material properties affect the mechanical response, they can also compensate for one another. Therefore, the larger CV after normalization can be interpreted as a strong variability of the material properties, previously hidden by the geometry's own influence. In conclusion, a new normalization protocol for the intervertebral disc stiffness in compression, flexion, extension, bilateral torsion and bending was proposed, with the possible use of MRI and FE to acquire the discs' anatomy and determine the nonlinear relations between stiffness and morphology. Such protocol may be useful to relate the disc's mechanical properties to its degree of degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis-related vertebral fractures represent a major health problem in elderly populations. Such fractures can often only be diagnosed after a substantial deformation history of the vertebral body. Therefore, it remains a challenge for clinicians to distinguish between stable and progressive potentially harmful fractures. Accordingly, novel criteria for selection of the appropriate conservative or surgical treatment are urgently needed. Computer tomography-based finite element analysis is an increasingly accepted method to predict the quasi-static vertebral strength and to follow up this small strain property longitudinally in time. A recent development in constitutive modeling allows us to simulate strain localization and densification in trabecular bone under large compressive strains without mesh dependence. The aim of this work was to validate this recently developed constitutive model of trabecular bone for the prediction of strain localization and densification in the human vertebral body subjected to large compressive deformation. A custom-made stepwise loading device mounted in a high resolution peripheral computer tomography system was used to describe the progressive collapse of 13 human vertebrae under axial compression. Continuum finite element analyses of the 13 compression tests were realized and the zones of high volumetric strain were compared with the experiments. A fair qualitative correspondence of the strain localization zone between the experiment and finite element analysis was achieved in 9 out of 13 tests and significant correlations of the volumetric strains were obtained throughout the range of applied axial compression. Interestingly, the stepwise propagating localization zones in trabecular bone converged to the buckling locations in the cortical shell. While the adopted continuum finite element approach still suffers from several limitations, these encouraging preliminary results towardsthe prediction of extended vertebral collapse may help in assessing fracture stability in future work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high copy dTph1 transposon system of Petunia (Solanaceae) is one of the most powerful insertion mutagens in plants, but its activity cannot be controlled in the commonly used mutator strains. We analysed the regulation of dTph1 activity by QTL analysis in recombinant inbred lines of the mutator strain W138 and a wild species (P. integrifolia spp. inflata). Two genetic factors were identified that control dTph1 transposition. One corresponded to the ACT1 locus on chromosome I. A second, previously undescribed locus ACT2 mapped on chromosome V. As a 6-cM introgression in W138, the P. i. inflata act1(S6) allele behaved as a single recessive locus that fully eliminated transposition of all dTph1 elements in all stages of plant development and in a heritable fashion. Weak dTph1 activity was restored in act1(S6)/ACT2(S6) double introgression lines, indicating that the P. i. inflata allele at ACT2 conferred a low level of transposition. Thus, the act1(S6) allele is useful for simple and predictable control of transposition of the entire dTph1 family when introgressed into an ultra-high copy W138 mutator strain. We demonstrate the use of the ACT1(W138)/act1(S6) allele pair in a two-element dTph1 transposition system by producing 10 000 unique and fixed dTph1 insertions in a population of 1250 co-isogenic lines. This Petunia system produces the highest per plant insertion number of any known two-element system, providing a powerful and logistically simple tool for transposon mutagenesis of qualitative as well as quantitative traits.