218 resultados para electrocutaneous stimulation
Resumo:
Theta burst transcranial magnetic stimulation (TBS) may induce behavioural changes that outlast the stimulation period. The neurophysiological basis of these behavioural changes are currently under investigation. Given the evidence that cortical information processing relies on transient synchronization and desynchronization of neuronal assemblies, we set out to test whether TBS is associated with changes of neuronal synchronization as assessed by surface EEG. In four healthy subjects one TBS train of 600 pulses (200 bursts, each burst consisting of 3 pulses at 30 Hz, repeated at intervals of 100 ms) was applied over the right frontal eye field and EEG synchronization was assessed in a time-resolved manner over 60 min by using a non-overlapping moving window. For each time step the linear cross-correlation matrix for six EEG channels of the right and for the six homotopic EEG channels of the left hemisphere were computed and their largest eigenvalues used to assess changes of synchronization. Synchronization was computed for broadband EEG and for the delta, theta, alpha, beta and gamma frequency bands. In all subjects EEG synchronization of the stimulated hemisphere was significantly and persistently increased relative to EEG synchronization of the unstimulated hemisphere. This effect occurred immediately after TBS for the theta, alpha, beta and gamma frequency bands and 10-20 min after TBS for broadband and delta frequency band EEG. Our results demonstrate that TBS is associated with increased neuronal synchronization of the cerebral hemisphere ipsilateral to the stimulation site relative to the unstimulated hemisphere. We speculate that enhanced synchronization interferes with cortical information processing and thus may be a neurophysiological correlate of the impaired behavioural performance detected previously.
Resumo:
BACKGROUND: Muscular counterpulsation (MCP) was developed for circulatory assistance by stimulation of peripheral skeletal muscles. We report on a clinical MCP study in patients with and without chronic heart failure (CHF). METHODS AND RESULTS: MCP treatment was applied (30 patients treated, 25 controls, all under optimal therapy) for 30 minutes during eight days by an ECG-triggered, battery-powered, portable pulse generator with skin electrodes inducing light contractions of calf and thigh muscles, sequentially stimulated at early diastole. Hemodynamic parameters (ECG, blood pressure and echocardiography) were measured one day before and one day after the treatment period in two groups: Group 1 (9 MCP, 11 no MCP) with ejection fraction (EF) above 40% and Group 2 (21 MCP, 14 no MCP) below 40%. In Group 2 (all patients suffering from CHF) mean EF increased by 21% (p<0.001) and stroke volume by 13% (p<0.001), while end systolic volume decreased by 23% (p<0.001). In Group 1, the increase in EF (6%) and stroke volume (8%) was also significant (p<0.05) but less pronounced than in Group 2. Physical exercise duration and walking distance increased in Group 2 by 56% and 72%, respectively. CONCLUSIONS: Noninvasive MCP treatment for eight days substantially improves cardiac function and physical performance in patients with CHF.
Resumo:
BACKGROUND: Intradialytic exercise has been described to improve blood pressure stability and dialysis efficacy. However, comorbid conditions in the dialysis population often preclude the widespread use of active intradialytic exercise. Therefore, we investigated the effect of intradialytic transcutaneous muscle stimulation (TEMS) and passive cycling movements (PCMs) on blood pressure and dialysis efficacy in patients. STUDY DESIGN: Prospective, controlled, randomized, crossover investigation. SETTING ; PARTICIPANTS: Ten patients were randomly allocated to TEMS, PCMs, or no intervention (NI) for 9 consecutive dialysis sessions. INTERVENTION: Participants were studied with NI, PCMs using a motor-driven ergometer, and bilateral TEMS of the leg musculature. Individual dialysis prescriptions were unchanged during the investigation. OUTCOMES ; MEASUREMENTS: The effect of TEMS and PCMs on blood pressure and dialysis efficacy in patients was assessed. RESULTS: Mean blood pressure increased from 121/64 +/- 21/15 mm Hg with NI to 132/69 +/- 21/15 mm Hg (P < 0.001) during sessions with PCMs and 125/66 +/- 22/16 mm Hg (P < 0.05) during sessions with TEMS. Urea and phosphate removal during dialysis were significantly (P < 0.001) greater with TEMS (19.4 +/- 3.7 g/dialysis and 1,197 +/- 265 mg/dialysis) or PCMs (20.1 +/- 3.4 g/dialysis and 1,172 +/- 315 mg/dialysis) than with NI (15.1 +/- 3.9 g/dialysis and 895 +/- 202 mg/dialysis). Body weight, ultrafiltration, Kt/V, and increases in hemoglobin and albumin levels during dialysis did not differ among the NI, PCMs, and TEMS groups. LIMITATIONS: The study design does not allow extension of the findings to prolonged treatment. CONCLUSION: Future studies during longer observation periods will have to prove the persistence of these acute findings. Both TEMS and PCMs deserve future investigations in dialysis patients because they increase intradialytic blood pressure and facilitate urea and phosphate removal when applied short term.
Resumo:
The aim of this study was to investigate the impact of unilateral deep brain stimulation (DBS) of the ventrointermediate (Vim) thalamic nucleus on neuropsychological functioning comparing stimulation-on with stimulation-off conditions. Nine patients [five patients with Parkinson's Disease (PD), two patients with essential tremor (ET) and 2 patients with multiple sclerosis (MS)] underwent comprehensive neuropsychological testing for cognitive functions, including general mental impairment, aphasia, agnosia, executive and constructional abilities, learning, memory, cognitive processing speed and attention as well as depression. The neuropsychological assessments were performed at least 6 months postoperatively (mean 9 months). Testing in the stimulation-on and stimulation-off condition was obtained within a period of 3 to 4 weeks. Unilateral DBS resulted in improvement of tremor in all patients. There were no significant differences between the stimulation-on and the stimulation-off condition with the exception of a decrement of word-recall in the short delay free-recall subtest of the Rey Auditory-Verbal Learning Test (RAVLT). Subgroup analysis indicated that the impairment in word-recall was related to left-sided thalamic stimulation. Our study confirms that chronic unilateral DBS is a safe method with regard to cognitive function. The subtle changes in episodic memory are related to stimulation per se and not to a microthalamotomy effect.
Resumo:
OBJECT: The authors studied the long-term efficacy of deep brain stimulation (DBS) of the posteroventral lateral globus pallidus internus up to 2 years postoperatively in patients with primary non-DYT1 generalized dystonia or choreoathetosis. The results are briefly compared with those reported for DBS in DYT1 dystonia (Oppenheim dystonia), which is caused by the DYT1 gene. METHODS: Enrollment in this prospective expanded pilot study was limited to adult patients with severely disabling, medically refractory non-DYT1 generalized dystonia or choreoathetosis. Six consecutive patients underwent follow-up examinations at defined intervals of 3 months, 1 year, and 2 years postsurgery. There were five women and one man, and their mean age at surgery was 45.5 years. Formal assessments included both the Burke-Fahn-Marsden dystonia scale and the recently developed Unified Dystonia Rating Scale. Two patients had primary generalized non-DYT1 dystonia, and four suffered from choreoathetosis secondary to infantile cerebral palsy. Bilateral quadripolar DBS electrodes were implanted in all instances, except in one patient with markedly asymmetrical symptoms. There were no adverse events related to surgery. The Burke-Fahn-Marsden scores in the two patients with generalized dystonia improved by 78 and 71% at 3 months, by 82 and 69% at 1 year, and by 78 and 70% at 2 years postoperatively. This was paralleled by marked amelioration of disability scores. The mean improvement in Burke-Fahn-Marsden scores in patients with choreoathetosis was 12% at 3 months, 29% at 1 year, and 23% at 2 years postoperatively, which was not significant. Two of these patients thought that they had achieved marked improvement at 2 years postoperatively, although results of objective evaluations were less impressive. In these two patients there was a minor but stable improvement in disability scores. All patients had an improvement in pain scores at the 2-year follow-up review. Medication was tapered off in both patients with generalized dystonia and reduced in two of the patients with choreoathetosis. All stimulation-induced side effects were reversible on adjustment of the DBS settings. Energy consumption of the batteries was considerably higher than in patients with Parkinson disease. CONCLUSIONS: Chronic pallidal DBS is a safe and effective procedure in generalized non-DYT1 dystonia, and it may become the procedure of choice in patients with medically refractory dystonia. Postoperative improvement of choreoathetosis is more modest and varied, and subjective ratings of outcome may exceed objective evaluations.
Resumo:
OBJECT: The goal of this study was to investigate the efficacy of long-term deep brain stimulation (DBS) of the posteroventral lateral globus pallidus internus (GPi) accomplished using a single-contact monopolar electrode in patients with advanced Parkinson disease (PD). METHODS: Sixteen patients suffering from severe PD and levodopa-induced side effects such as dyskinesias and on-off fluctuations were enrolled in a prospective study protocol. There were six women and 10 men and their mean age at surgery was 65 years. All patients underwent implantation of a monopolar electrode in the posteroventral lateral GPi. Initially, nine patients received unilateral stimulation. Three of these patients underwent contralateral surgery at a later time. Ten patients received bilateral stimulation (contemporaneous bilateral surgery was performed in seven patients and staged bilateral surgery in the three patients who had received unilateral stimulation initially). Formal assessments were performed during both off-medication and on-medication (levodopa) periods preoperatively, and at 3 and 12 months postoperatively. There were no serious complications related to surgery or to DBS. Two transient adverse events occurred: in one patient a small pallidal hematoma developed, resulting in a prolonged micropallidotomy effect, and in another patient a subcutaneous hemorrhage occurred at the site of the pacemaker. In patients who received unilateral DBS, the Unified Parkinson's Disease Rating Scale activities of daily living (ADL) score during the off-levodopa period decreased from 30.8 at baseline to 20.4 at 3 months (34% improvement) and 20.6 at 12 months (33% improvement) postoperatively. The motor score during the off period improved from 57.2 at baseline to 35.2 at 3 months (38% improvement) and 35.3 at 12 months (38% improvement) postoperatively. Bilateral DBS resulted in a reduction in the ADL score during the off period from 34.9 at baseline to 22.3 at 3 months (36% improvement) and 22.9 at 12 months (34% improvement). The motor score for the off period changed from 63.4 at baseline to 40.3 at 3 months (36% improvement) and 37.5 at 12 months (41% improvement). In addition, there were significant improvements in patients' symptoms during the on period and in on-off motor fluctuations. CONCLUSIONS: Pallidal DBS accomplished using a monopolar electrode is a safe and effective procedure for treatment of advanced PD. Compared with pallidotomy, the advantages of pallidal DBS lie in its reversibility and the option to perform bilateral surgery in one session. Comparative studies in which DBS is applied to other targets are needed.
Resumo:
Interhemispheric imbalance is discussed as a pathophysiological mechanism in visuospatial neglect. It is suggested that after a lesion of the right hemisphere the mutual transcallosal inhibition is impaired, resulting in an increased activity of the left hemisphere. We investigated the interhemispheric balance of attention in healthy subjects by using a free visual exploration task and by interfering with the neural activity of the posterior parietal cortex (PPC) of either hemisphere using an inhibitory transcranial magnetic stimulation routine with theta burst stimulation (TBS). Subjects explored colour photographs of real-life scenes presented on a computer screen under four conditions: (i) without TBS; (ii) after TBS over the right PPC; (iii) after TBS over the left PPC; and (iv) after TBS over the right PPC and, after the first half of the task, over the left PPC. Eye movements were measured, and distribution of mean cumulative fixation duration over screen halves was analyzed. TBS over the right PPC resulted in a significant rightward shift of mean cumulative fixation duration of approximately 30 min. The shift could be reversed when a subsequent train of TBS was applied over the left PPC. However, left PPC stimulation alone had no significant effect on visual exploration behaviour. The present study shows that the effect of TBS on the PPC depends on which hemisphere is stimulated and on the state of the contralateral homologue area. These findings are in accordance with the predictions of the interhemispheric rivalry model in neglect.
Resumo:
The right posterior parietal cortex (PPC) is critically involved in visual exploration behaviour, and damage to this area may lead to neglect of the left hemispace. We investigated whether neglect-like visual exploration behaviour could be induced in healthy subjects using theta burst repetitive transcranial magnetic stimulation (rTMS). To this end, one continuous train of theta burst rTMS was applied over the right PPC in 12 healthy subjects prior to a visual exploration task where colour photographs of real-life scenes were presented on a computer screen. In a control experiment, stimulation was also applied over the vertex. Eye movements were measured, and the distribution of visual fixations in the left and right halves of the screen was analysed. In comparison to the performance of 28 control subjects without stimulation, theta burst rTMS over the right PPC, but not the vertex, significantly decreased cumulative fixation duration in the left screen-half and significantly increased cumulative fixation duration in the right screen-half for a time period of 30 min. These results suggest that theta burst rTMS is a reliable method of inducing transient neglect-like visual exploration behaviour.
Resumo:
The present study investigated the role of the right posterior parietal cortex (PPC) in the triggering of memory-guided saccades by means of double-pulse transcranial magnetic stimulation (dTMS). Shortly before saccade onset, dTMS with different interstimulus intervals (ISI; 35, 50, 65 or 80 ms) was applied. For contralateral saccades, dTMS significantly decreased saccadic latency with an ISI of 80 ms and increased saccadic gain with an ISI of 65 and 80 ms. Together with the findings of a previous study during frontal eye field (FEF) stimulation the present results demonstrate similarities and differences between both regions in the execution of memory-guided saccades. Firstly, dTMS facilitates saccade triggering in both regions, but the timing is different. Secondly, dTMS over the PPC provokes a hypermetria of contralateral memory-guided saccades that was not observed during FEF stimulation. The results are discussed within the context of recent neurophysiological findings in monkeys.